Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stat3 controls lysosomal-mediated cell death in vivo

Abstract

It is well established that lysosomes play an active role during the execution of cell death1. A range of stimuli can lead to lysosomal membrane permeabilization (LMP), thus inducing programmed cell death without involvement of the classical apoptotic programme2,3. However, these lysosomal pathways of cell death have mostly been described in vitro or under pathological conditions4,5,6,7. Here we show that the physiological process of post-lactational regression of the mammary gland is accomplished through a non-classical, lysosomal-mediated pathway of cell death. We found that, during involution, lysosomes in the mammary epithelium undergo widespread LMP. Furthermore, although cell death through LMP is independent of executioner caspases 3, 6 and 7, it requires Stat3, which upregulates the expression of lysosomal proteases cathepsin B and L, while downregulating their endogenous inhibitor Spi2A (ref. 8). Our findings report a previously unknown, Stat3-regulated lysosomal-mediated pathway of cell death under physiological circumstances. We anticipate that these findings will be of major importance in the design of treatments for cancers such as breast, colon and liver, where cathepsins and Stat3 are commonly overexpressed and/or hyperactivated respectively1,9,10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of physiological cell death in mammary gland involution.
Figure 2: Cell death in early involution is independent of executioner caspases.
Figure 3: Mammary lysosomes become leaky during involution.
Figure 4: Stat3 regulates cathepsin B and L expression.
Figure 5: Inhibition of cytosolic cathepsin activity prevents Stat3-mediated cell death.

Similar content being viewed by others

References

  1. Kroemer, G. & Jaattela, M. Lysosomes and autophagy in cell death control. Nat. Rev. Cancer 5, 886–897 (2005).

    Article  CAS  Google Scholar 

  2. Guicciardi, M. E., Leist, M. & Gores, G. J. Lysosomes in cell death. Oncogene 23, 2881–2890 (2004).

    Article  CAS  Google Scholar 

  3. Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008).

    Article  CAS  Google Scholar 

  4. Lockshin, R. A. & Zakeri, Z. Caspase-independent cell death? Oncogene 23, 2766–2773 (2004).

    Article  CAS  Google Scholar 

  5. Nylandsted, J. et al. Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res. 62, 7139–7142 (2002).

    CAS  PubMed  Google Scholar 

  6. Luke, C. J. et al. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell 130, 1108–1119 (2007).

    Article  CAS  Google Scholar 

  7. Guicciardi, M. E., Miyoshi, H., Bronk, S. F. & Gores, G. J. Cathepsin B knockout mice are resistant to tumor necrosis factor-α-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications. Am. J. Pathol. 159, 2045–2054 (2001).

    Article  CAS  Google Scholar 

  8. Liu, N. et al. NF-κB protects from the lysosomal pathway of cell death. EMBO J. 22, 5313–5322 (2003).

    Article  CAS  Google Scholar 

  9. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    Article  CAS  Google Scholar 

  10. Vasiljeva, O. et al. Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 27, 4191–4199 (2008).

    Article  CAS  Google Scholar 

  11. Foghsgaard, L. et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol. 153, 999–1010 (2001).

    Article  CAS  Google Scholar 

  12. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489–495 (2000).

    Article  CAS  Google Scholar 

  13. Kagedal, K., Zhao, M., Svensson, I. & Brunk, U. T. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335–343 (2001).

    Article  CAS  Google Scholar 

  14. Nakayama, M. et al. Multiple pathways of TWEAK-induced cell death. J. Immunol. 168, 734–743 (2002).

    Article  CAS  Google Scholar 

  15. Yamashima, T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog. Neurobiol. 62, 273–295 (2000).

    Article  CAS  Google Scholar 

  16. Lascelles, A. K. & Lee, C. S. Lactation: A Comprehensive Treatise Vol. 4. (Academic, 1978).

    Google Scholar 

  17. Nguyen, A. V. & Pollard, J. W. Transforming growth factor β3 induces cell death during the first stage of mammary gland involution. Development 127, 3107–3118 (2000).

    CAS  PubMed  Google Scholar 

  18. Kritikou, E. A. et al. A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 130, 3459–3468 (2003).

    Article  CAS  Google Scholar 

  19. Chapman, R. S. et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 13, 2604–2616 (1999).

    Article  CAS  Google Scholar 

  20. Lund, L. R. et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 122, 181–193 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Thangaraju, M. et al. C/EBP δ is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development 132, 4675–4685 (2005).

    Article  CAS  Google Scholar 

  22. Baxter, F. O., Neoh, K. & Tevendale, M. C. The beginning of the end: death signaling in early involution. J. Mamm. Gland Biol. Neoplasia 12, 3–13 (2007).

    Article  Google Scholar 

  23. Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007).

    Article  CAS  Google Scholar 

  24. Marti, A. et al. Mouse mammary gland involution is associated with cytochrome c release and caspase activation. Mech. Dev. 104, 89–98 (2001).

    Article  CAS  Google Scholar 

  25. Zhou, Q. et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37, 10757–10765 (1998).

    Article  CAS  Google Scholar 

  26. Fehrenbacher, N. et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 68, 6623–6633 (2008).

    Article  CAS  Google Scholar 

  27. Zaragoza, R. et al. Nitration of cathepsin D enhances its proteolytic activity during mammary gland remodelling after lactation. Biochem. J. 419, 279–288 (2009).

    Article  CAS  Google Scholar 

  28. Mohamed, M. M. & Sloane, B. F. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775 (2006).

    Article  CAS  Google Scholar 

  29. Tiffen, P. G. et al. A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo. Mol. Endocrinol. 22, 2677–2688 (2008).

    Article  CAS  Google Scholar 

  30. Liu, N. et al. Serine protease inhibitor 2A is a protective factor for memory T cell development. Nat. Immunol. 5, 919–926 (2004).

    Article  CAS  Google Scholar 

  31. Inglis, J. D. & Hill, R. E. The murine Spi-2 proteinase inhibitor locus: a multigene family with a hypervariable reactive site domain. EMBO J. 10, 255–261 (1991).

    Article  CAS  Google Scholar 

  32. Clarkson, R. W., Wayland, M. T., Lee, J., Freeman, T. & Watson, C. J. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 6, R92–R109 (2004).

    Article  CAS  Google Scholar 

  33. Clarkson, R. W. et al. NF-κB inhibits apoptosis in murine mammary epithelia. J. Biol. Chem. 275, 12737–12742 (2000).

    Article  CAS  Google Scholar 

  34. Yu, Z., Zhang, W. & Kone, B. C. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor κB. Biochem. J. 367, 97–105 (2002).

    Article  CAS  Google Scholar 

  35. Baxter, F. O. et al. IKKβ/2 induces TWEAK and apoptosis in mammary epithelial cells. Development 133, 3485–3494 (2006).

    Article  CAS  Google Scholar 

  36. Reinhardt, T. A. & Lippolis, J. D. Mammary gland involution is associated with rapid down regulation of major mammary Ca2+-ATPases. Biochem. Biophys. Res. Commun. 378, 99–102 (2009).

    Article  CAS  Google Scholar 

  37. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    Article  CAS  Google Scholar 

  38. Alonzi, T. et al. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. Mol. Cell Biol. 21, 1621–1632 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Selbert, S. et al. Efficient BLG-Cre mediated gene deletion in the mammary gland. Transgenic Res. 7, 387–396 (1998).

    Article  CAS  Google Scholar 

  40. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  Google Scholar 

  41. Lakhani, S. A. et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847–851 (2006).

    Article  CAS  Google Scholar 

  42. Zheng, T. S. et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nature Med. 6, 1241–1247 (2000).

    Article  CAS  Google Scholar 

  43. Warley, A., Powell, J. M. & Skepper, J. N. Capillary surface area is reduced and tissue thickness from capillaries to myocytes is increased in the left ventricle of streptozotocin-diabetic rats. Diabetologia 38, 413–421 (1995).

    Article  CAS  Google Scholar 

  44. Khaled, W. T. et al. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development 134, 2739–2750 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Skepper for help with the electron microscopy and B. Potter for histological preparations. We thank also P. Came for the TUNEL data and W. Khaled for discussions. This work has been supported by a PhD studentship from the Pathology Department, University of Cambridge (P.A.K.), Breast Cancer Campaign PhD studentship (A.D.S. and W.L.), Italian Cancer Research Association (V.P.) and Biotechnology and Biological Sciences Research Council grant no. BB/C006836/1 (R.W.E.C. and N.O.).

Author information

Authors and Affiliations

Authors

Contributions

P.A.K. carried out project design and all experiments, except those stated separately and wrote the manuscript; A.D.S. designed and carried out the in vitro studies; W.L. carried out studies on caspase-knockout mice; N.O. and R.W.E.C. generated the p35 transgenic mouse and provided data; B.K. carried out caspase studies; J.T. provided Stat3 inhibitor; V.P. provided Stat3fl/fl mice; R.A.F. provided all caspase-knockout mice; C.J.W. carried out project design and wrote the manuscript.

Corresponding author

Correspondence to Christine J. Watson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreuzaler, P., Staniszewska, A., Li, W. et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol 13, 303–309 (2011). https://doi.org/10.1038/ncb2171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing