Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The functions of microRNAs in pluripotency and reprogramming

Pluripotent stem cells (PSCs) express a distinctive set of microRNAs (miRNAs). Many of these miRNAs have similar targeting sequences and are predicted to regulate downstream targets cooperatively. These enriched miRNAs are involved in the regulation of the unique PSC cell cycle, and there is increasing evidence that they also influence other important characteristics of PSCs, including their morphology, epigenetic profile and resistance to apoptosis. Detailed studies of miRNAs and their targets in PSCs should help to parse the regulatory networks that underlie developmental processes and cellular reprogramming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the published interactions between pluripotency-associated miRNAs and their target mRNAs from experiments in the murine system.
Figure 2: Summary of the published interactions between pluripotency-associated miRNAs and their target mRNAs from experiments in the human system.

References

  1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  2. Winter, J., Jung, S., Keller, S., Gregory, R. I. & Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228–234 (2009).

    CAS  PubMed  Google Scholar 

  3. Zhao, Y. & Srivastava, D. A developmental view of microRNA function. Trends Biochem. Sci. 32, 189–197 (2007).

    CAS  PubMed  Google Scholar 

  4. Ivey, K. N. & Srivastava, D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7, 36–41 (2010).

    CAS  PubMed  Google Scholar 

  5. Esquela-Kerscher, A. & Slack, F. J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

    CAS  PubMed  Google Scholar 

  6. Lima, R. T. et al. MicroRNA regulation of core apoptosis pathways in cancer. Eur. J. Cancer 47, 163–174 (2011).

    CAS  PubMed  Google Scholar 

  7. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  8. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  PubMed  Google Scholar 

  9. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    CAS  PubMed  Google Scholar 

  10. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  PubMed  Google Scholar 

  11. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110 (2011).

    CAS  PubMed  Google Scholar 

  12. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    CAS  PubMed  Google Scholar 

  13. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380–385 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bar, M. et al. MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26, 2496–2505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Laurent, L. C. et al. Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells 26, 1506–1516 (2008).

    CAS  PubMed  Google Scholar 

  16. Morin, R. D. et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18, 610–621 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Suh, M. R. et al. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488–498 (2004).

    CAS  PubMed  Google Scholar 

  18. Barroso-delJesus, A. et al. The Nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells. FASEB J. 25, 1497–1508 (2011).

    CAS  PubMed  Google Scholar 

  19. Qi, J. et al. MicroRNAs regulate human embryonic stem cell division. Cell Cycle 8, 3729–3741 (2009).

    CAS  PubMed  Google Scholar 

  20. Leung, A. K. et al. Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat. Struct. Mol. Biol. 18, 237–244 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lipchina, I. et al. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev. 25, 2173–2186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ambasudhan, R. et al. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9, 113–118 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jayawardena, T. M. et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 110, 1465–1473 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  28. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  29. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  30. Plath, K. & Lowry, W. E. Progress in understanding reprogramming to the induced pluripotent state. Nat. Rev. Genet. 12, 253–265 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin, S. L. et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14, 2115–2124 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Z., Yang, C. S., Nakashima, K. & Rana, T. M. Small RNA-mediated regulation of iPS cell generation. EMBO J. 30, 823–834 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. Liao, B. et al. MicroRNA cluster 302–367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J. Biol. Chem. 286, 17359–17364 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Judson, R. L., Babiarz, J. E., Venere, M. & Blelloch, R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat. Biotechnol. 27, 459–461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Subramanyam, D. et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29, 443–448 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Card, D. A. et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol. Cell. Biol. 28, 6426–6438 (2008).

    PubMed  Google Scholar 

  38. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    CAS  PubMed  Google Scholar 

  39. Craig, V. J. et al. Myc-mediated repression of microRNA-34a promotes high-grade transformation of B-cell lymphoma by dysregulation of FoxP1. Blood 117, 6227–6236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mott, J. L. et al. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-κB. J. Cell Biochem. 110, 1155–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, C. S., Li, Z. & Rana, T. M. MicroRNAs modulate iPS cell generation. RNA 17, 1451–1460 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Melton, C., Judson, R. L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Hagan, J. P., Piskounova, E. & Gregory, R. I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16, 1021–1025 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008).

    CAS  PubMed  Google Scholar 

  47. Choi, Y. J. et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat. Cell Biol. 13, 1353–1360 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Anokye-Danso, F. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyoshi, N. et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8, 633–638 (2011).

    CAS  PubMed  Google Scholar 

  50. Becker, K. A. et al. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J. Cell. Physiol. 209, 883–893 (2006).

    CAS  PubMed  Google Scholar 

  51. Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53 (2006).

    CAS  PubMed  Google Scholar 

  52. Wang, Y. et al. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat. Genet. 40, 1478–1483 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sengupta, S. et al. MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells. Stem Cells 27, 1524–1528 (2009).

    CAS  PubMed  Google Scholar 

  54. Lichner, Z. et al. The miR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells. Differentiation 81, 11–24 (2011).

    CAS  PubMed  Google Scholar 

  55. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    CAS  PubMed  Google Scholar 

  56. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010).

    CAS  PubMed  Google Scholar 

  58. Bellovin, D. I. et al. Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene 25, 6959–6967 (2006).

    CAS  PubMed  Google Scholar 

  59. Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    CAS  PubMed  Google Scholar 

  60. Laurent, L. et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20, 320–331 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ohi, Y. et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat. Cell Biol. 13, 541–549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nazor, K. L. et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10, 620–634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sinkkonen, L. et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 15, 259–267 (2008).

    CAS  PubMed  Google Scholar 

  65. Benetti, R. et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature structural & molecular biology 15, 268–279 (2008).

    CAS  Google Scholar 

  66. Fabbri, M. et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl Acad. Sci. USA 104, 15805–15810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng, G. X. et al. A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells. PLoS Genet. 7, e1002054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hermeking, H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193–199 (2010).

    CAS  PubMed  Google Scholar 

  69. Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460, 1132–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao, Y. et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3, 475–479 (2008).

    CAS  PubMed  Google Scholar 

  72. Gibcus, J. H. et al. MiR-17/106b seed family regulates p21 in Hodgkin's lymphoma. J. Pathol. 225, 609–617 (2011).

    CAS  PubMed  Google Scholar 

  73. Ho, J. et al. The pro-apoptotic protein Bim is a microRNA target in kidney progenitors. J. Am. Soc. Nephrol. 22, 1053–1063 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Matsubara, H. et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26, 6099–6105 (2007).

    CAS  PubMed  Google Scholar 

  75. Petrocca, F., Vecchione, A. & Croce, C. M. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor β signaling. Cancer Res. 68, 8191–8194 (2008).

    CAS  PubMed  Google Scholar 

  76. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    CAS  PubMed  Google Scholar 

  77. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Orom, U. A. & Lund, A. H. Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43, 162–165 (2007).

    CAS  PubMed  Google Scholar 

  81. Nonne, N., Ameyar-Zazoua, M., Souidi, M. & Harel-Bellan, A. Tandem affinity purification of miRNA target mRNAs (TAP-Tar). Nucleic Acids Res. 38, e20 (2010).

    PubMed  Google Scholar 

  82. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  PubMed  Google Scholar 

  83. Miranda, K. C. et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126, 1203–1217 (2006).

    CAS  PubMed  Google Scholar 

  84. John, B. et al. Human microRNA targets. PLoS Biol. 2, e363 (2004).

    PubMed  PubMed Central  Google Scholar 

  85. Kiriakidou, M. et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18, 1165–1178 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    CAS  PubMed  Google Scholar 

  88. Huang, J. C. et al. Using expression profiling data to identify human microRNA targets. Nat. Methods 4, 1045–1049 (2007).

    CAS  PubMed  Google Scholar 

  89. Wang, X. & El Naqa, I. M. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24, 325–332 (2008).

    PubMed  Google Scholar 

  90. Shirdel, E. A., Xie, W., Mak, T. W. & Jurisica, I. NAViGaTing the micronome—using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One 6, e17429 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee, H. et al. BioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on Amazon EC2. IEEE Trans. Nanobioscience 11, 266–272 (2012).

    PubMed  Google Scholar 

  92. Nam, S. et al. MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res. 37, W356–W362 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by California Institute for Regenerative Medicine (CIRM) grants RM1-07007, CL1-00502, RT1-01108, and TR1-01250, and NIH grant 5R33MH087925 to JFL. HLS was supported by the Esther O'Keefe Foundation and a CIRM Scholar Graduate Student Award TG2-01165. LCL was supported by NIH grant K12 HD001259 and The Hartwell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeanne F. Loring or Louise C. Laurent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonardo, T., Schultheisz, H., Loring, J. et al. The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 14, 1114–1121 (2012). https://doi.org/10.1038/ncb2613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2613

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing