Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29

Abstract

Organ development is a complex process governed by the interplay of several signalling pathways that have critical functions in the regulation of cell growth and proliferation. Over the past years, the Hippo pathway has emerged as a key regulator of organ size. Perturbation of this pathway has been shown to play important roles in tumorigenesis. YAP, the main downstream target of the mammalian Hippo pathway, promotes organ growth, yet the underlying molecular mechanism of this regulation remains unclear. Here we provide evidence that YAP activates the mammalian target of rapamycin (mTOR), a major regulator of cell growth. We have identified the tumour suppressor PTEN, an upstream negative regulator of mTOR, as a critical mediator of YAP in mTOR regulation. We demonstrate that YAP downregulates PTEN by inducing miR-29 to inhibit PTEN translation. Last, we show that PI(3)K–mTOR is a pathway modulated by YAP to regulate cell size, tissue growth and hyperplasia. Our studies reveal a functional link between Hippo and PI(3)K–mTOR, providing a molecular basis for the coordination of these two pathways in organ size regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: YAP regulates mTOR activity.
Figure 2: PTEN is a critical mediator of YAP in the regulation of mTORC1/2 activity.
Figure 3: YAP directly induces the expression of miR-29c to target PTEN.
Figure 4: YAP regulates cell size and tissue growth through modulation of PI(3)K and mTOR.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    Article  CAS  Google Scholar 

  2. Lee, K. P. et al. The Hippo–Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl Acad. Sci. USA 107, 8248–8253 (2010).

    Article  CAS  Google Scholar 

  3. Lu, L. et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl Acad. Sci. USA 107, 1437–1442 (2010).

    Article  CAS  Google Scholar 

  4. Shima, H. et al. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 17, 6649–6659 (1998).

    Article  CAS  Google Scholar 

  5. Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186 (1994).

    Article  CAS  Google Scholar 

  6. Verdu, J., Buratovich, M. A., Wilder, E. L. & Birnbaum, M. J. Cell-autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nat. Cell Biol. 1, 500–506 (1999).

    Article  CAS  Google Scholar 

  7. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involvedin cell contact inhibition and tissue growth control. Gen. Dev. 21, 2747–2761 (2007).

    Article  CAS  Google Scholar 

  8. Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol. 8, 27–36 (2006).

    Article  CAS  Google Scholar 

  9. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  Google Scholar 

  10. Lai, Z. C. et al. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675–685 (2005).

    Article  CAS  Google Scholar 

  11. Wu, S., Huang, J., Dong, J. & Pan, D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456 (2003).

    Article  CAS  Google Scholar 

  12. Hao, Y., Chun, A., Cheung, K., Rashidi, B. & Yang, X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem. 283, 5496–5509 (2008).

    Article  CAS  Google Scholar 

  13. Zhang, J., Smolen, G. A. & Haber, D. A. Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res. 68, 2789–2794 (2008).

    Article  CAS  Google Scholar 

  14. Chan, E. H. et al. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076–2086 (2005).

    Article  CAS  Google Scholar 

  15. Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).

    Article  CAS  Google Scholar 

  16. Strassburger, K., Tiebe, M., Pinna, F., Breuhahn, K. & Teleman, A. A. Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev. Biol. 367, 187–196 (2012).

    Article  CAS  Google Scholar 

  17. Ye, X., Deng, Y. & Lai, Z. C. Akt is negatively regulated by Hippo signaling for growth inhibition in Drosophila. Dev. Biol. 369, 115–123 (2012).

    Article  CAS  Google Scholar 

  18. Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054–2060 (2007).

    Article  CAS  Google Scholar 

  19. Zhang, J. et al. YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat. Cell Biol. 11, 1444–1450 (2009).

    Article  CAS  Google Scholar 

  20. Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012).

    Article  CAS  Google Scholar 

  21. Mo, J. S., Yu, F. X., Gong, R., Brown, J. H. & Guan, K. L. G. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Gen. Dev. 26, 2138–2143 (2012).

    Article  CAS  Google Scholar 

  22. Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425–438 (2009).

    Article  CAS  Google Scholar 

  23. Yagi, R., Chen, L. F., Shigesada, K., Murakami, Y. & Ito, Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. EMBO J. 18, 2551–2562 (1999).

    Article  CAS  Google Scholar 

  24. Vazquez, F., Ramaswamy, S., Nakamura, N. & Sellers, W. R. Phosphorylation of the PTEN tail regulates protein stability and function. Mol. Cell. Biol. 20, 5010–5018 (2000).

    Article  CAS  Google Scholar 

  25. Fabian, M. R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  Google Scholar 

  26. Thompson, B. J. & Cohen, S. M. The Hippo pathway regulates the bantammicroRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 (2006).

    Article  CAS  Google Scholar 

  27. Nolo, R., Morrison, C. M., Tao, C., Zhang, X. & Halder, G. The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr. Biol. 16, 1895–1904 (2006).

    Article  CAS  Google Scholar 

  28. Wang, C., Bian, Z., Wei, D. & Zhang, J. G. miR-29b regulates migration of human breast cancer cells. Mol. Cell. Biochem. 352, 197–207 (2011).

    Article  CAS  Google Scholar 

  29. Kong, G. et al. Upregulated microRNA-29a by hepatitis B virus X protein enhances hepatoma cell migration by targeting PTEN in cell culture model. PLoS one 6, e19518 (2011).

    Article  CAS  Google Scholar 

  30. Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Gen. Dev. 22, 1962–1971 (2008).

    Article  CAS  Google Scholar 

  31. Cao, X., Pfaff, S. L. & Gage, F. H. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Gen. Dev. 22, 3320–3334 (2008).

    Article  CAS  Google Scholar 

  32. Schlegelmilch, K. et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    Article  CAS  Google Scholar 

  33. Korkaya, H. et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 7, e1000121 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Furnari and M. Wicha for reagents. We thank J. Zhao for technical help, and J. Kim and B. Zhao for thoughtful discussions. The deep-sequencing service was provided by LC Sciences. K.T. was supported in part by the UCSD Graduate Training Program in Cellular and Molecular Pharmacology. K-L.G. is supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Contributions

K.T. performed the experiments. K.S. conducted the LY294002 animal experiment. K.T. and R.C.R. performed fluorescent immunohistochemistry staining experiments. D.Y. prepared mouse tissue slides for immunohistochemistry experiments. K.T. and H.B. performed luciferase and ChIP assays. K.T. and N.M. conducted flow cytometry experiments. J.F. and N.B. provided the Mst1/2-knockout mouse liver tissues. K.S. and F.D.C. designed the LY294002 animal experiment. K.T. and K-L.G. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Kun-Liang Guan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tumaneng, K., Schlegelmilch, K., Russell, R. et al. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat Cell Biol 14, 1322–1329 (2012). https://doi.org/10.1038/ncb2615

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing