Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anthrax toxin receptor 2a controls mitotic spindle positioning

Abstract

Oriented mitosis is essential during tissue morphogenesis. The Wnt/planar cell polarity (Wnt/PCP) pathway orients mitosis in a number of developmental systems, including dorsal epiblast cell divisions along the animal–vegetal (A–V) axis during zebrafish gastrulation. How Wnt signalling orients the mitotic plane is, however, unknown. Here we show that, in dorsal epiblast cells, anthrax toxin receptor 2a (Antxr2a) accumulates in a polarized cortical cap, which is aligned with the embryonic A–V axis and forecasts the division plane. Filamentous actin (F-actin) also forms an A–V polarized cap, which depends on Wnt/PCP and its effectors RhoA and Rock2. Antxr2a is recruited to the cap by interacting with actin. Antxr2a also interacts with RhoA and together they activate the diaphanous-related formin zDia2. Mechanistically, Antxr2a functions as a Wnt-dependent polarized determinant, which, through the action of RhoA and zDia2, exerts torque on the spindle to align it with the A–V axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antxr2a and F-actin are polarized at the cell cortex and form caps in dividing dorsal epiblast cells.
Figure 2: Antxr2a/F-actin caps align with the embryonic A–V axis and forecast the plane of mitosis.
Figure 3: The mitotic spindle aligns to the embryonic A–V axis through episodes of directed rotation.
Figure 4: RhoA interacts with Antxr2a and is required for Antxr2a/F-actin cap alignment.
Figure 5: Spindle rotation phenotype of zdia2 and antxr2a morphants.
Figure 6: The actin–myosin cytoskeleton is required for proper alignment of the Antxr2a/F-actin caps.
Figure 7: PCP pathway-dependent alignment of the F-actin and Antxr2a caps along the embryonic axis.
Figure 8: Phenotypic summary and a model for spindle alignment and oriented mitosis in dorsal epiblast cells.

Similar content being viewed by others

References

  1. Castanon, I. & Gonzalez-Gaitan, M. Oriented cell division in vertebrate embryogenesis. Curr. Opin. Cell Biol. 23, 697–704 (2011).

    Article  CAS  Google Scholar 

  2. Neumuller, R. A. & Knoblich, J. A. Dividing cellular asymmetry: Asymmetric cell division and its implications for stem cells and cancer. Genes Dev. 23, 2675–2699 (2009).

    Article  PubMed  Google Scholar 

  3. Gonczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355–366 (2008).

    Article  Google Scholar 

  4. Gong, Y., Mo, C. & Fraser, S. E. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430, 689–693 (2004).

    Article  CAS  Google Scholar 

  5. Quesada-Hernandez, E. et al. Stereotypical cell division orientation controls neural rod midline formation in zebrafish. Curr. Biol. 20, 1966–1972 (2010).

    Article  CAS  Google Scholar 

  6. Schlessinger, K., Hall, A. & Tolwinski, N. Wnt signaling pathways meet Rho GTPases. Genes Dev. 23, 265–277 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522–529 (2006).

    Article  CAS  Google Scholar 

  8. Riento, K. & Ridley, A. J. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4, 446–456 (2003).

    Article  CAS  Google Scholar 

  9. Bartolini, F. & Gundersen, G. G. Formins and microtubules. Biochim. Biophys. Acta 1803, 164–173 (2010).

    Article  CAS  Google Scholar 

  10. Chesarone, M. A., DuPage, A. G. & Goode, B. L. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat. Rev. Mol. Cell Biol. 11, 62–74 (2010).

    Article  CAS  Google Scholar 

  11. Goode, B. L. & Eck, M. J. Mechanism and function of formins in the control of actin assembly. Annu. Rev. Biochem. 76, 593–627 (2007).

    Article  CAS  Google Scholar 

  12. Lee, L., Klee, S. K., Evangelista, M., Boone, C. & Pellman, D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144, 947–961 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Miller, R. K., Matheos, D. & Rose, M. D. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol. 144, 963–975 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Azoury, J. et al. Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr. Biol. 18, 1514–1519 (2008).

    Article  CAS  Google Scholar 

  15. Schuh, M. & Ellenberg, J. A new model for asymmetric spindle positioning in mouse oocytes. Curr. Biol. 18, 1986–1992 (2008).

    Article  CAS  Google Scholar 

  16. Scobie, H. M., Rainey, G. J., Bradley, K. A. & Young, J. A. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl Acad. Sci. USA 100, 5170–5174 (2003).

    Article  CAS  Google Scholar 

  17. Reeves, C. V., Dufraine, J., Young, J. A. & Kitajewski, J. Anthrax toxin receptor 2 is expressed in murine and tumor vasculature and functions in endothelial proliferation and morphogenesis. Oncogene 29, 789–801 (2010).

    Article  CAS  Google Scholar 

  18. Deuquet, J., Lausch, E., Superti-Furga, A. & van der Goot, F. G. The dark sides of capillary morphogenesis gene 2. EMBO J. 31, 3–13 (2012).

    Article  CAS  Google Scholar 

  19. Macqueen, D. J. & Johnston, I. A. Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses. Dev. Genes. Evol. 218, 1–14 (2008).

    Article  CAS  Google Scholar 

  20. Cao, L. G. & Wang, Y. L. Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments. J. Cell Biol. 111, 1905–1911 (1990).

    Article  CAS  Google Scholar 

  21. Murthy, K. & Wadsworth, P. Myosin-II-dependent localization and dynamics of F-actin during cytokinesis. Curr. Biol. 15, 724–731 (2005).

    Article  CAS  Google Scholar 

  22. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Distel, M., Hocking, J. C., Volkmann, K. & Koster, R. W. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J. Cell Biol. 191, 875–890 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Bouzigues, C. & Dahan, M. Transient directed motions of GABA(A) receptors in growth cones detected by a speed correlation index. Biophys. J. 92, 654–660 (2007).

    Article  CAS  Google Scholar 

  25. Fink, J. et al. External forces control mitotic spindle positioning. Nat. Cell Biol. 13, 771–778 (2011).

    Article  CAS  Google Scholar 

  26. Zhu, S., Liu, L., Korzh, V., Gong, Z. & Low, B. C. RhoA acts downstream of Wnt5 and Wnt11 to regulate convergence and extension movements by involving effectors Rho kinase and Diaphanous: use of zebrafish as an in vivo model for GTPase signaling. Cell Signal 18, 359–372 (2006).

    Article  CAS  Google Scholar 

  27. Sit, S. T. & Manser, E. Rho GTPases and their role in organizing the actin cytoskeleton. J. Cell Sci. 124, 679–683 (2011).

    Article  CAS  Google Scholar 

  28. Lai, S. L. et al. Diaphanous-related formin 2 and profilin I are required for gastrulation cell movements. PLoS One 3, e3439 (2008).

    Article  PubMed  Google Scholar 

  29. Li, F. & Higgs, H. N. The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr. Biol. 13, 1335–1340 (2003).

    Article  CAS  Google Scholar 

  30. Liu, W. et al. Mechanism of activation of the Formin protein Daam1. Proc. Natl Acad. Sci. USA 105, 210–215 (2008).

    Article  CAS  Google Scholar 

  31. Hancock, J. F. & Hall, A. A novel role for RhoGDI as an inhibitor of GAP proteins. EMBO J. 12, 1915–1921 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Matsui, T. et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15, 2208–2216 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Rohde, L. A. & Heisenberg, C. P. Zebrafish gastrulation: cell movements, signals, and mechanisms. Int. Rev. Cytol. 261, 159–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Poincloux, R. et al. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel. Proc. Natl Acad. Sci. USA 108, 1943–1948 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Fukui, Y., Kitanishi-Yumura, T. & Yumura, S. Myosin II-independent F-actin flow contributes to cell locomotion in dictyostelium. J. Cell Sci. 112, 877–886 (1999).

    CAS  PubMed  Google Scholar 

  37. Vallotton, P., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Simultaneous mapping of filamentous actin flow and turnover in migrating cells by quantitative fluorescent speckle microscopy. Proc. Natl Acad. Sci. USA 101, 9660–9665 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Hwang, E., Kusch, J., Barral, Y. & Huffaker, T. C. Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J. Cell Biol. 161, 483–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Sagot, I., Klee, S. K. & Pellman, D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4, 42–50 (2002).

    Article  CAS  Google Scholar 

  41. Yang, H. C. & Pon, L. A. Actin cable dynamics in budding yeast. Proc. Natl Acad. Sci. USA 99, 751–756 (2002).

    Article  CAS  Google Scholar 

  42. Ishizaki, T. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat. Cell Biol. 3, 8–14 (2001).

    Article  CAS  Google Scholar 

  43. Kiyomitsu, T. & Cheeseman, I. M. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation. Nat. Cell Biol. 14, 311–317 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Zeng, G. et al. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109, 1345–1352 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Cirone, P. et al. A role for planar cell polarity signaling in angiogenesis. Angiogenesis 11, 347–360 (2008).

    Article  PubMed  Google Scholar 

  46. Westerfield, M. The zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) (Univ. Oregon Press, 2000).

    Google Scholar 

  47. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dynam. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  48. Abrami, L. et al. Functional interactions between anthrax toxin receptors and the WNT signalling protein LRP6. Cell Microbiol. 10, 2509–2519 (2008).

    Article  CAS  Google Scholar 

  49. Montero, J. A. et al. Shield formation at the onset of zebrafish gastrulation. Development 132, 1187–1198 (2005).

    Article  CAS  Google Scholar 

  50. Kimmel, C. B., Warga, R. M. & Kane, D. A. Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development 120, 265–276 (1994).

    CAS  Google Scholar 

  51. Ulrich, F. et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin. Dev. Cell 9, 555–564 (2005).

    Article  CAS  Google Scholar 

  52. O’Connor, M. N. et al. Functional genomics in zebrafish permits rapid characterization of novel platelet membrane proteins. Blood 113, 4754–4762 (2009).

    Article  PubMed  Google Scholar 

  53. Kilian, B. et al. The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation. Mech. Dev. 120, 467–476 (2003).

    Article  CAS  Google Scholar 

  54. Topczewski, J. et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 1, 251–264 (2001).

    Article  CAS  Google Scholar 

  55. Solnica-Krezel, L. et al. Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish. Development 123, 67–80 (1996).

    CAS  Google Scholar 

  56. Schulte-Merker, S., van Eeden, F. J., Halpern, M. E., Kimmel, C. B. & Nusslein-Volhard, C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

    CAS  Google Scholar 

  57. Akimenko, M. A., Ekker, M., Wegner, J., Lin, W. & Westerfield, M. Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J. Neurosci. 14, 3475–3486 (1994).

    Article  CAS  Google Scholar 

  58. Thisse, C., Thisse, B., Halpern, M. E. & Postlethwait, J. H. Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev. Biol. 164, 420–429 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Kunz and N. Zangger for generating the zAntxr2a construct for the pulldown, the phylogenetic tree and multiple sequence alignments, S. Abke, E. Paluch, C. Low, G. Weidinger, R. W. Köster, E. Kardash, L. Solnica-Krezel, A. J. Ridley, G. Davidson, S. Loubéry and O. Schaad, and the bioimaging and fish platforms for reagents and technical help and T. Hannich for critical reading. This work was supported by the SNSF, the Swiss SystemsX.ch initiative and LipidX-2008/011 (M.G-G. and F.G.v.d.G.), by the Fondation SANTE-Vaduz/Aide au Soutien des Nouvelles Thérapies (F.G.v.d.G.) and by the ERC, the NCCR Frontiers in Genetics and Chemical Biology programmes and the Polish–Swiss research program (M.G-G.).

Author information

Authors and Affiliations

Authors

Contributions

I.C. designed and carried out the experiments, generated and interpreted most of the data and prepared the manuscript. L.A. designed and carried out the immunoprecipitation experiments. L.H. designed the algorithm and simulation assays for the directed rotation experiments and C.P.H. supported experimentation and contributed to data interpretation. I.C., F.G.v.d.G. and M.G-G. wrote the manuscript.

Corresponding authors

Correspondence to F. G. van der Goot or M. González-Gaitán.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2219 kb)

Supplementary Note

Supplementary Information (PDF 212 kb)

Supplementary Table

Supplementary Information (XLSX 58 kb)

Supplementary Movie 1

Supplementary Information (AVI 3482 kb)

Supplementary Movie 2

Supplementary Information (AVI 312 kb)

Supplementary Movie 3

Supplementary Information (AVI 2707 kb)

Supplementary Movie 4

Supplementary Information (AVI 452 kb)

Supplementary Movie 5

Supplementary Information (AVI 411 kb)

Supplementary Movie 6

Supplementary Information (AVI 920 kb)

Supplementary Movie 7

Supplementary Information (AVI 369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castanon, I., Abrami, L., Holtzer, L. et al. Anthrax toxin receptor 2a controls mitotic spindle positioning. Nat Cell Biol 15, 28–39 (2013). https://doi.org/10.1038/ncb2632

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing