Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells

Abstract

Mouse haematopoietic stem cells (HSCs) undergo a postnatal transition in several properties, including a marked reduction in their self-renewal activity. We now show that the developmentally timed change in this key function of HSCs is associated with their decreased expression of Lin28b and an accompanying increase in their let-7 microRNA levels. Lentivirus-mediated overexpression of Lin28 in adult HSCs elevates their self-renewal activity in transplanted irradiated hosts, as does overexpression of Hmga2, a well-established let-7 target that is upregulated in fetal HSCs. Conversely, HSCs from fetal Hmga2−/− mice do not exhibit the heightened self-renewal activity that is characteristic of wild-type fetal HSCs. Interestingly, overexpression of Hmga2 in adult HSCs does not mimic the ability of elevated Lin28 to activate a fetal lymphoid differentiation program. Thus, Lin28b may act as a master regulator of developmentally timed changes in HSC programs with Hmga2 serving as its specific downstream modulator of HSC self-renewal potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lin28b, let-7 targets and let-7 microRNAs are differentially expressed in fetal and adult HSCs.
Figure 2: Experimental design used to quantify the self-renewal activity of transplanted HSC populations.
Figure 3: Lin28 overexpression in ABM HSCs causes an increase in their expression of Hmga2.
Figure 4: Lin28 and Hmga2 overexpression increases the self-renewal activity of ABM HSCs.
Figure 5: Adult Hmga2 KO mice have reduced HSC numbers that match their reduced size.
Figure 6: Hmga2 is required for the high self-renewal activity of fetal HSCs.
Figure 7: Hmga2 overexpression in adult HSCs does not recapitulate the Lin28-mediated activation of fetal B-cell differentiation programs.
Figure 8: Developmental regulation of HSC self-renewal by the Lin28b–let-7–Hmga2 axis.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Dzierzak, E. The emergence of definitive hematopoietic stem cells in the mammal. Curr. Opin. Hematol. 12, 197–202 (2005).

    Article  PubMed  Google Scholar 

  2. Ema, H. & Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284–2288 (2000).

    CAS  PubMed  Google Scholar 

  3. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    CAS  PubMed  Google Scholar 

  4. Bowie, M. B. et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J. Clin. Invest. 116, 2808–2816 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rhodes, K. E. et al. The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2, 252–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell 8, 377–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Pawliuk, R., Eaves, C. & Humphries, R. K. Evidence of both ontogeny and transplant dose-regulated expansion of hematopoietic stem cells in vivo. Blood 88, 2852–2858 (1996).

    CAS  PubMed  Google Scholar 

  10. Micklem, H. S., Ford, C. E., Evans, E. P., Ogden, D. A. & Papworth, D. S. Competitive in vivo proliferation of foetal and adult haematopoietic cells in lethally irradiated mice. J. Cell. Physiol. 79, 293–298 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Harrison, D. E., Zhong, R. K., Jordan, C. T., Lemischka, I. R. & Astle, C. M. Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp. Hematol. 25, 293–297 (1997).

    CAS  PubMed  Google Scholar 

  12. Rebel, V. I., Miller, C. L., Eaves, C. J. & Lansdorp, P. M. The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their liver adult bone marrow counterparts. Blood 87, 3500–3507 (1996).

    CAS  PubMed  Google Scholar 

  13. Bowie, M. B. et al. Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc. Natl Acad. Sci. USA 104, 5878–5882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, I., Saunders, T. L. & Morrison, S. J. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130, 470–483 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mochizuki-Kashio, M. et al. Dependency on the polycomb gene Ezh2distinguishes fetal from adult hematopoietic stem cells. Blood 118, 6553–6561 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431, 1002–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Hock, H. et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev. 18, 2336–2341 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ye, M. et al. C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat. Cell Biol. 15, 385–394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kent, D. G. et al. Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113, 6342–6350 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Benz, C. et al. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 10, 273–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637–646 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Piskounova, E. et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147, 1066–1079 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Yuan, J., Nguyen, C. K., Liu, X., Kanellopoulou, C. & Muljo, S. A. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 335, 1195–1200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cleynen, I. et al. HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor- κ B. Mol. Cancer Res. 5, 363–372 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Brants, J. R. et al. Differential regulation of the insulin-like growth factor II mRNA-binding protein genes by architectural transcription factor HMGA2. FEBS Lett. 569, 277–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C. & Eaves, C. J. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl Acad. Sci. USA 87, 8736–8740 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fusco, A. & Fedele, M. Roles of HMGA proteins in cancer. Nat. Rev. Cancer 7, 899–910 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Ikeda, K., Mason, P. J. & Bessler, M. 3’UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice. Blood 117, 5860–5869 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiang, X., Benson, K. F. & Chada, K. Mini-mouse: disruption of the pygmy locus in a transgenic insertional mutant. Science 247, 967–969 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, X., Benson, K. F., Ashar, H. R. & Chada, K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376, 771–774 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Zou, Y. et al. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 340, 372–376 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kikuchi, K. & Kondo, M. Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth. Proc. Natl Acad. Sci. USA 103, 17852–17857 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Toledano, H., D’Alterio, C., Czech, B., Levine, E. & Jones, D. L. The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 485, 605–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nishino, J., Kim, I., Chada, K. & Morrison, S. J. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135, 227–239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murakami, Y. et al. Deregulated expression of HMGA2 is implicated in clonal expansion of PIGA deficient cells in paroxysmal nocturnal haemoglobinuria. Brit. J. Haematol. 156, 383–387 (2012).

    Article  CAS  Google Scholar 

  40. Cavazzana-Calvo, M. et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467, 318–322 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Z. et al. An HMGA2-IGF2BP2 axis regulates myoblast proliferation and myogenesis. Dev. Cell 23, 1176–1188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Inoue, N. et al. Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood 108, 4232–4236 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, G. P. et al. Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial. Blood 115, 4356–4366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikuta, K. & Weissman, I. L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl Acad. Sci. USA 89, 1502–1506 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Benson, K. F. & Chada, K. Mini-mouse: phenotypic characterization of a transgenic insertional mutant allelic to pygmy. Genet. Res. 64, 27–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Lynch, S. A. et al. The 12q14 microdeletion syndrome: six new cases confirming the role of HMGA2 in growth. Eur. J. Hum. Genet. 19, 534–539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mari, F. et al. Refinement of the 12q14 microdeletion syndrome: primordial dwarfism and developmental delay with or without osteopoikilosis. Eur. J. Hum. Genet. 17, 1141–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weedon, M. N. et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39, 1245–1250 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin, S. C. et al. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364, 208–213 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Li, S. et al. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347, 528–533 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Sinha, Y. N., Wolff, G. L., Baxter, S. R. & Domon, O. E. Serum and pituitary concentrations of growth hormone and prolactin in pygmy mice. Proc. Soc. Exp. Biol. Med. 162, 221–223 (1979).

    Article  CAS  PubMed  Google Scholar 

  52. Nissley, S. P., Knazek, R. A. & Wolff, G. L. Somatomedin activity in sera of genetically small mice. Horm. Metabol. Res. 12, 158–164 (1980).

    Article  CAS  Google Scholar 

  53. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Boggs, D. R. The total marrow mass of the mouse—a simplified method of measurement. Am. J. Hematol. 16, 277–286 (1984).

    Article  CAS  PubMed  Google Scholar 

  55. Hu, Y. F. & Smyth, G. K. ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Miller, C. L. & Eaves, C. J. Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc. Natl Acad. Sci. USA 94, 13648–13653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Challita, P. M. et al. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J. Virol. 69, 748–755 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Carbonaro, D. A. et al. In vivo transduction by intravenous injection of a lentiviral vector expressing human ADA into neonatal ADA gene knockout mice: a novel form of enzyme replacement therapy for ADA deficiency. Mol. Ther. 13, 1110–1120 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Imren, S. et al. High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J. Clin. Invest. 114, 953–962 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute of Canada (NCIC, with funds from the Terry Fox Run), the Canadian Institutes of Health Research (CIHR), the Canadian Cancer Society (grant 700374), and the Terry Fox Foundation. M.R.C. received a Vanier Canada Graduate Scholarship from CIHR, a Michael Smith Foundation for Health Research (MSFHR) Graduate Studentship and an MD/PhD Graduate Training Award from CIHR. S.B. received a University of British Columbia Graduate Studentship. C.B. received a fellowship from the Deutsche Forschungsgemeinschaft. D.J.H.F.K. received a CIHR Transplantation Research Training Award, a Frederick Banting and Charles Best Canada Graduate Scholarship, and a Vanier Canada Graduate Scholarship from CIHR. P.A.B. received a Kay Kendall Leukemia Fund Intermediate Fellowship from the UK. D.G.K. received studentships from CIHR and MSFHR. F.K. was supported by Deutsche Krebshilfe grant 109420, Fellowship 2010/04 from the European Hematology Association, and a Deutsche Forschungsgemeinschaft grant (KU2288/3-1). We thank support staff of the Flow Cytometry Facility at the Terry Fox Laboratory, the Animal Resource Centre and the Centre for Translational and Applied Genomics at the BC Cancer Agency, M. Hale and G. Edin for technical assistance, and M. Kardel, M. Makarem, A. Karsan and P. Hoodless for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

M.R.C. performed all of the experiments with assistance from S.B. for qRT–PCR, intracellular flow cytometry and peritoneal cavity cell analyses, and F.K. for let-7 profiling. D.J.H.F.K. performed the analysis of Affymetrix array data. D.Q.T. collected ESLAM HSCs from E14.5 fetal livers for qRT–PCR analyses. H.M., K.R, C.D. and D.Q.T. performed the analyses of transplanted mice. M.R.C. and C.J.E. designed and interpreted all experiments with input from C.B., D.G.K., S.W. and R.K.H. M.R.C., C.B., P.A.B. and C.J.E. wrote the manuscript with final approval from all authors.

Corresponding author

Correspondence to Connie J. Eaves.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 618 kb)

Supplementary Table 1

Supplementary Information (XLS 4652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Copley, M., Babovic, S., Benz, C. et al. The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat Cell Biol 15, 916–925 (2013). https://doi.org/10.1038/ncb2783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing