Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Causes and consequences of replication stress

Abstract

Replication stress is a complex phenomenon that has serious implications for genome stability, cell survival and human disease. Generation of aberrant replication fork structures containing single-stranded DNA activates the replication stress response, primarily mediated by the kinase ATR (ATM- and Rad3-related). Along with its downstream effectors, ATR stabilizes and helps to restart stalled replication forks, avoiding the generation of DNA damage and genome instability. Understanding this response may be key to diagnosing and treating human diseases caused by defective responses to replication stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of stalled replication fork restart and collapse.
Figure 2: Sources of replication stress.

Similar content being viewed by others

References

  1. Masai, H., Matsumoto, S., You, Z., Yoshizawa-Sugata, N. & Oda, M. Eukaryotic chromosome DNA replication: where, when, and how? Annu. Rev. Biochem. 79, 89–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Woodward, A. et al. Excess Mcm2–7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673–683 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ge, X., Jackson, D. & Blow, J. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331–3341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McIntosh, D. & Blow, J. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb. Perspect. Biol. 4, a012955 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pacek, M. & Walter, J. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J. 23, 3667–3676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Byun, T., Pacek, M., Yee, M.-C., Walter, J. & Cimprich, K. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zou, L. & Elledge, S. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. MacDougall, C., Byun, T., Van, C., Yee, M.-c. & Cimprich, K. The structural determinants of checkpoint activation. Genes Dev. 21, 898–903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nam, E. & Cortez, D. ATR signalling: more than meeting at the fork. Biochem. J. 436, 527–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Maréchal, A. & Zou, L. DNA damage sensing by the ATM and ATR Kinases. Cold Spring Harb. Perspect. Biol. 5, a012716 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bianco, J. et al. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods 57, 149–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Koundrioukoff, S. et al. Stepwise activation of the ATR signaling pathway upon increasing replication stress impacts fragile site integrity. PLoS Genet. 9, e1003643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambert, S. & Carr, A. Impediments to replication fork movement: stabilisation, reactivation and genome instability. Chromosoma 122, 33–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Labib, K. & De Piccoli, G. Surviving chromosome replication: the many roles of the S-phase checkpoint pathway. Philos. Trans. R. Soc. Lond. B 366, 3554–3561 (2011).

    Article  CAS  Google Scholar 

  15. Petermann, E. & Helleday, T. Pathways of mammalian replication fork restart. Nat. Rev. Mol. Cell. Biol. 11, 683–687 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Elvers, I., Johansson, F., Groth, P., Erixon, K. & Helleday, T. UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res. 39, 7049–7057 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopes, M., Foiani, M. & Sogo, J. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Mailand, N., Gibbs-Seymour, I. & Bekker-Jensen, S. Regulation of PCNA-protein interactions for genome stability. Nat. Rev. Mol. Cell. Biol. 14, 269–282 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Tercero, J. & Diffley, J. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Cobb, J., Bjergbaek, L., Shimada, K., Frei, C. & Gasser, S. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 22, 4325–4336 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Piccoli, G. et al. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol. Cell 45, 696–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Ragland, R. et al. RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev. 27, 2259–2273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sirbu, B. M. et al. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev. 25, 1320–1327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanada, K. et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat. Struct. Mol. Biol. 14, 1096–1104 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Chanoux, R. et al. ATR and H2AX cooperate in maintaining genome stability under replication stress. J. Biol. Chem. 284, 5994–6003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ciccia, A. & Elledge, S. J. The DNA damage response: Making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Segurado, M. & Diffley, J. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev. 22, 1816–1827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petermann, E., Orta, M. L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matos, J., Blanco, M., Maslen, S., Skehel, J. & West, S. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147, 158–172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sørensen, C. & Syljuåsen, R. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res. 40, 477–486 (2012).

    Article  PubMed  CAS  Google Scholar 

  32. Sogo, J., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Hu, J. et al. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. Cell 149, 1221–1232 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Couch, F. B. et al. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 27, 1610–1623 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlacher, K., Wu, H. & Jasin, M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22, 106–116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417–423 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Bétous, R. et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 26, 151–162 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Brooks, P. & Theruvathu, J. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol 35, 187–193 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Langevin, F., Crossan, G., Rosado, I., Arends, M. & Patel, K. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Rosado, I., Langevin, F., Crossan, G., Takata, M. & Patel, K. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat. Struct. Mol. Biol. 18, 1432–1434 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, H. & D'Andrea, A. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26, 1393–1408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dalgaard, J. Causes and consequences of ribonucleotide incorporation into nuclear DNA. Trends Genet. 28, 592–597 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Sparks, J. et al. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47, 980–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reijns, M. et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008–1022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lazzaro, F. et al. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol. Cell 45, 99–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nick McElhinny, S. et al. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 6, 774–781 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, N. et al. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332, 1561–1564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Williams, J. et al. Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol. Cell 49, 1010–1015 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McMurray, C. Mechanisms of trinucleotide repeat instability during human development. Nat. Rev. Genet. 11, 786–799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, J. & Mirkin, S. The balancing act of DNA repeat expansions. Curr. Opin. Genet. Dev. 23, 280–288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paeschke, K. et al. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497, 458–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bochman, M., Paeschke, K. & Zakian, V. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 13, 770–780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Helmrich, A., Ballarino, M., Nudler, E. & Tora, L. Transcription-replication encounters, consequences and genomic instability. Nat. Struct. Mol. Biol. 20, 412–418 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Bermejo, R., Lai, M. & Foiani, M. Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol. Cell 45, 710–718 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Barlow, J. et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 152, 620–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bermejo, R. et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146, 233–246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huertas, P. & Aguilera, A. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol. Cell 12, 711–721 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Li, X. & Manley, J. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Paulsen, R. D. et al. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 35, 228–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wahba, L., Amon, J. D., Koshland, D. & Vuica-Ross, M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 44, 978–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stirling, P. et al. R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev. 26, 163–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aguilera, A. & García-Muse, T. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46, 115–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 11, 1315–1324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bermejo, R. et al. Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription. Cell 138, 870–884 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Alzu, A. et al. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151, 835–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yüce, Ö. & West, S. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response. Mol. Cell. Biol. 33, 406–417 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Poli, J. et al. dNTP pools determine fork progression and origin usage under replication stress. EMBO J. 31, 883–894 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bester, A. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 114, 385–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Aguilera, A. & García-Muse, T. Causes of genome instability. Annu. Rev. Genet. 47, 19–50 (2013).

    Article  CAS  Google Scholar 

  74. Saldivar, J. et al. Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet. 8, e1003077 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Beck, H. et al. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption. Mol. Cell Biol. 32, 4226–4236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shima, N. et al. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat. Genet. 39, 93–98 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Debatisse, M., Le Tallec, B., Letessier, A., Dutrillaux, B. & Brison, O. Common fragile sites: mechanisms of instability revisited. Trends Genet. 28, 22–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Casper, A., Nghiem, P., Arlt, M. & Glover, T. ATR regulates fragile site stability. Cell 111, 779–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Le Tallec, B. et al. Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep. 4, 420–428 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Ying, S. et al. MUS81 promotes common fragile site expression. Nat. Cell Biol. 15, 1001–1007 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Naim, V., Wilhelm, T., Debatisse, M. & Rosselli, F. ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat. Cell Biol. 15, 1008–1015 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Srinivasan, S., Dominguez-Sola, D., Wang, L., Hyrien, O. & Gautier, J. Cdc45 is a critical effector of myc-dependent DNA replication stress. Cell Rep. 3, 1629–1639 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Jones, R. et al. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene 32, 3744–3753 (2012).

    Article  PubMed  CAS  Google Scholar 

  84. Halazonetis, T., Gorgoulis, V. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Neelsen, K., Zanini, I., Herrador, R. & Lopes, M. Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J. Cell Biol. 200, 699–708 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jiang, Y. et al. Common fragile sites are characterized by histone hypoacetylation. Hum. Mol. Genet. 18, 4501–4512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Murga, M. et al. A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat. Genet. 41, 891–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ogi, T. et al. Identification of the first ATRIP-deficient patient and novel mutations in ATR define a clinical spectrum for ATR-ATRIP Seckel Syndrome. PLoS Genet. 8, e1002945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. O'Driscoll, M. & Jeggo, P. The role of the DNA damage response pathways in brain development and microcephaly: insight from human disorders. DNA Rep. 7, 1039–1050 (2008).

    Article  CAS  Google Scholar 

  91. Duursma, A. M., Driscoll, R., Elias, J. E. & Cimprich, K. A. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol. Cell 50, 116–122 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, J. & Dunphy, W. The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol. Biol. Cell 24, 1343–1353 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shiotani, B. et al. Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep. 3, 1651–1662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stracker, T. & Petrini, J. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell. Biol. 12, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Crow, Y. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Bartek, J., Mistrik, M. & Bartkova, J. Thresholds of replication stress signaling in cancer development and treatment. Nat. Struct. Mol. Biol. 19, 5–7 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Schoppy, D. et al. Oncogenic stress sensitizes murine cancers to hypomorphic suppression of ATR. J. Clin. Invest. 122, 241–252 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Murga, M. et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat. Struct. Mol. Biol. 18, 1331–1335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gilad, O. et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res. 70, 9693–9702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ruzankina, Y. et al. Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nat. Genet. 41, 1144–1149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. López-Contreras, A., Gutierrez-Martinez, P., Specks, J., Rodrigo-Perez, S. & Fernandez-Capetillo, O. An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation. J. Exp. Med. 209, 455–461 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Brown, E. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lam, M., Liu, Q., Elledge, S. & Rosen, J. Chk1 is haploinsufficient for multiple functions critical to tumor suppression. Cancer Cell 6, 45–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fokas, E. et al. Targeting ATR in DNA damage response and cancer therapeutics. Cancer Treat. Rev. (2013).

  106. Drusco, A. et al. Common fragile site tumor suppressor genes and corresponding mouse models of cancer. J. Biomed. Biotechnol. 2011, 984505 (2011).

    Article  PubMed  CAS  Google Scholar 

  107. Stankiewicz, P. & Lupski, J. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Arlt, M., Wilson, T. & Glover, T. Replication stress and mechanisms of CNV formation. Curr. Opin. Genet. Dev. 22, 204–210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Carr, A. & Lambert, S. Replication stress-induced genome instability: The dark side of replication maintenance by homologous recombination. J. Mol. Biol. 425, 4733–4744 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Hu, L. et al. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Nature 501, 569–572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Follonier, C., Oehler, J., Herrador, R. & Lopes, M. Friedreich's ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat. Struct. Mol. Biol. 20, 486–494 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Bernstein, K., Gangloff, S. & Rothstein, R. The RecQ DNA helicases in DNA repair. Annu. Rev. Genet. 44, 393–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chabosseau, P. et al. Pyrimidine pool imbalance induced by BLM helicase deficiency contributes to genetic instability in Bloom syndrome. Nat. Commun. 2, 368 (2011).

    Article  PubMed  CAS  Google Scholar 

  114. Yuan, J., Ghosal, G. & Chen, J. The annealing helicase HARP protects stalled replication forks. Genes Dev. 23, 2394–2399 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yusufzai, T., Kong, X., Yokomori, K. & Kadonaga, J. The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev. 23, 2400–2404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ciccia, A. et al. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev. 23, 2415–2425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bansbach, C., Bétous, R., Lovejoy, C., Glick, G. & Cortez, D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev. 23, 2405–2414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Postow, L., Woo, E., Chait, B. & Funabiki, H. Identification of SMARCAL1 as a component of the DNA damage response. J. Biol. Chem. 284, 35951–35961 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bétous, R. et al. Substrate-selective repair and restart of replication forks by DNA translocases. Cell Rep. 3, 1958–1969 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Baradaran-Heravi, A. et al. Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression. Hum. Mol. Genet. 21, 2572–2587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lavin, M. F., Yeo, A. J. & Becherel, O. J. Senataxin protects the genome: Implications for neurodegeneration and other abnormalities. Rare Diseases 1, e25230 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kawabata, T. et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol. Cell 41, 543–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hossain, M. & Stillman, B. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes Dev. 26, 1797–1810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kerzendorfer, C., Colnaghi, R., Abramowicz, I., Carpenter, G. & O'Driscoll, M. Meier-Gorlin syndrome and Wolf-Hirschhorn syndrome: Two developmental disorders highlighting the importance of efficient DNA replication for normal development and neurogenesis. DNA Rep. 12, 637–644 (2013).

    Article  CAS  Google Scholar 

  125. Hajdu, I., Ciccia, A., Lewis, S. & Elledge, S. Wolf-Hirschhorn syndrome candidate 1 is involved in the cellular response to DNA damage. Proc. Natl Acad. Sci. USA 108, 13130–13134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kerzendorfer, C. et al. Characterizing the functional consequences of haploinsufficiency of NELF-A (WHSC2) and SLBP identifies novel cellular phenotypes in Wolf-Hirschhorn syndrome. Hum. Mol. Genet. 21, 2181–2193 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Ask, K. et al. Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply. EMBO J. 31, 2013–2023 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Griffith, E. et al. Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nat. Genet. 40, 232–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Sivasubramaniam, S., Sun, X., Pan, Y.-R., Wang, S. & Lee, E. Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev. 22, 587–600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chaki, M. et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell 150, 533–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zhou, W. et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat. Genet. 44, 910–915 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Choi, H. et al. NEK8 links the ATR-regulated replication stress response and S phase CDK activity to renal ciliopathies. Mol. Cell 51, 423–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gonzalez-Suarez, I. & Gonzalo, S. Nurturing the genome: A-type lamins preserve genomic stability. Nucleus 1, 129–135 (2010).

    PubMed  Google Scholar 

  134. Hishida, T., Kubota, Y., Carr, A. M. & Iwasaki, H. RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature 457, 612–615 (2008).

    Article  PubMed  CAS  Google Scholar 

  135. Huang, D., Piening, B. D. & Paulovich, A. G. The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent. Mol. Cell. Biol. 33, 1515–1527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mankouri, H., Huttner, D. & Hickson, I. How unfinished business from S-phase affects mitosis and beyond. EMBO J. 32, 2661–2671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Negrini, S., Gorgoulis, V. & Halazonetis, T. Genomic instability—an evolving hallmark of cancer. Nat. Rev. Mol. Cell. Biol. 11, 220–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Broers, J., Hutchison, C. & Ramaekers, F. Laminopathies. J. Pathol. 204, 478–488 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Brown, D. Cortez and members of the Cimprich and Pasero labs for thoughtful discussions and careful reading of this manuscript. We apologize to those whose excellent work could not be cited directly due to space limitations. Work in the K.A.C. laboratory is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlene A. Cimprich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeman, M., Cimprich, K. Causes and consequences of replication stress. Nat Cell Biol 16, 2–9 (2014). https://doi.org/10.1038/ncb2897

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing