Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APCCdh1

Abstract

Emi1 promotes mitotic entry in Xenopus laevis embryos by inhibiting the APCCdc20 ubiquitination complex to allow accumulation of cyclin B. We show here that human Emi1 (hEmi1) functions to promote cyclin A accumulation and S phase entry in somatic cells by inhibiting the APCCdh1 complex. At the G1–S transition, hEmi1 is transcriptionally induced by the E2F transcription factor, much like cyclin A. hEmi1 overexpression accelerates S phase entry and can override a G1 block caused by overexpression of Cdh1 or the E2F-inhibitor p105 retinoblastoma protein (pRb). Depleting cells of hEmi1 through RNA interference prevents accumulation of cyclin A and inhibits S phase entry. These data suggest that E2F can activate both transcription of cyclin A and the hEmi1-dependent stabilization of APCCdh1 targets, such as cyclin A, to promote S phase entry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: hEmi1 is a functional homologue of xEmi1.
Figure 2: hEmi1 accumulates at the G1–S transition and is destroyed in early mitosis.
Figure 3: hEmi1 accumulates at the G1–S transition in an E2F-dependent manner.
Figure 4: hEmi1 associates with Cdh1 and inhibits the ubiquitination activity of APCCdh1 in vitro.
Figure 5: hEmi1 overcomes a Cdh1-induced G1 block and prevents destruction of APCCdh1 substrates in vivo.
Figure 6: hEmi1 promotes S phase entry.
Figure 7: Cyclin A accumulation requires hEmi1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Minshull, J., Blow, J. J. & Hunt, T. Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56, 947–756 (1989).

    Article  CAS  Google Scholar 

  2. Murray, A. W. & Kirschner, M. W. Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280 (1989).

    Article  CAS  Google Scholar 

  3. Meijer, L. et al. Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase. EMBO J. 8, 2275–2282 (1989).

    Article  CAS  Google Scholar 

  4. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).

    Article  CAS  Google Scholar 

  5. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001).

    Article  CAS  Google Scholar 

  6. King, R. W. et al. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–288 (1995).

    Article  CAS  Google Scholar 

  7. Jackson, P. K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429–439 (2000).

    Article  CAS  Google Scholar 

  8. Zachariae, W. & Nasmyth, K. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039–2058 (1999).

    Article  CAS  Google Scholar 

  9. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC- dependent proteolysis. Science 278, 460–463 (1997).

    Article  CAS  Google Scholar 

  10. Shirayama, M., Toth, A., Galova, M. & Nasmyth, K. APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402, 203–207 (1999).

    Article  CAS  Google Scholar 

  11. Fang, G., Yu, H. & Kirschner, M. W. Direct binding of CDC20 protein family members activates the anaphase- promoting complex in mitosis and G1. Mol. Cell 2, 163–171 (1998).

    Article  CAS  Google Scholar 

  12. Sigrist, S. J. & Lehner, C. F. Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671–681 (1997).

    Article  CAS  Google Scholar 

  13. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998).

    Article  CAS  Google Scholar 

  14. Kramer, E. R., Gieffers, C., Holzl, G., Hengstschlager, M. & Peters, J. M. Activation of the human anaphase-promoting complex by proteins of the CDC20/Fizzy family. Curr. Biol. 8, 1207–1210 (1998).

    Article  CAS  Google Scholar 

  15. Lorca, T. et al. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J. 17, 3565–3575 (1998).

    Article  CAS  Google Scholar 

  16. Shah, J. V. & Cleveland, D. W. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103, 997–1000 (2000).

    Article  CAS  Google Scholar 

  17. Pfleger, C. M., Salic, A., Lee, E. & Kirschner, M. W. Inhibition of Cdh1-APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1. Genes Dev. 15, 1759–1764 (2001).

    Article  CAS  Google Scholar 

  18. Chen, J. & Fang, G. MAD2B is an inhibitor of the anaphase-promoting complex. Genes Dev. 15, 1765–1770 (2001).

    Article  CAS  Google Scholar 

  19. Reimann, J. D. et al. Emi1 Is a Mitotic Regulator that Interfunctions with Cdc20 and Inhibits the Anaphase Promoting Complex. Cell 105, 645–655 (2001).

    Article  CAS  Google Scholar 

  20. Reimann, J. D. R., Gardner, B. E., Margottin-Goguet, F. & Jackson, P. K. Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev. 15, 3278–3285 (2001).

    Article  CAS  Google Scholar 

  21. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  Google Scholar 

  22. Lukas, C. et al. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401, 815–818 (1999).

    Article  CAS  Google Scholar 

  23. Girard, F., Strausfeld, U., Fernandez, A. & Lamb, N. J. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169–1179 (1991).

    Article  CAS  Google Scholar 

  24. Pagano, M., Draetta, G. & Jansen-Durr, P. Association of cdk2 kinase with the transcription factor E2F during S phase. Science 255, 1144–1147 (1992).

    Article  CAS  Google Scholar 

  25. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    Article  CAS  Google Scholar 

  26. Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M. & Peters, J. M. Mitotic regulation of the APC activator proteins CDC20 and CDH1. Mol. Biol. Cell 11, 1555–1569 (2000).

    Article  CAS  Google Scholar 

  27. Lukas, J. et al. Cyclin E-induced S phase without activation of the pRb/E2F pathway. Genes Dev. 11, 1479–1492 (1997).

    Article  CAS  Google Scholar 

  28. Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    Article  CAS  Google Scholar 

  29. Pagano, M., Pepperkok, R., Verde, F., Ansorge, W. & Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 961–971 (1992).

    Article  CAS  Google Scholar 

  30. Resnitzky, D., Hengst, L. & Reed, S. I. Cyclin A-associated kinase activity is rate limiting for entrance into S phase and is negatively regulated in G1 by p27Kip1. Mol. Cell. Biol. 15, 4347–4352 (1995).

    Article  CAS  Google Scholar 

  31. Sorensen, C. S. et al. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis. Mol. Cell Biol. 20, 7613–7623 (2000).

    Article  CAS  Google Scholar 

  32. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  33. Petersen, B. O. et al. Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev. 14, 2330–2343 (2000).

    Article  CAS  Google Scholar 

  34. Furstenthal, L., Swanson, C., Kaiser, B. K., Eldridge, A. G. & Jackson, P. K. Triggering ubiquitination of a CDK inhibitor at origins of DNA replication. Nature Cell Biol. 3, 715–722 (2001).

    Article  CAS  Google Scholar 

  35. Sorensen, C. S. et al. A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex–Cdh1 and Cyclin A–Cdk2 during cell cycle progression. Mol. Cell. Biol. 21, 3692–3703 (2001).

    Article  CAS  Google Scholar 

  36. Grosskortenhaus, R. & Sprenger, F. Rca1 inhibits APC–Cdh1(Fzr) and is required to prevent cyclin degradation in G2. Dev. Cell 2, 29–40 (2002).

    Article  CAS  Google Scholar 

  37. Dong, X. et al. Control of G1 in the developing Drosophila eye: rca1 regulates Cyclin A. Genes Dev. 11, 94–105 (1997).

    Article  CAS  Google Scholar 

  38. Sprenger, F., Yakubovich, N. & O'Farrell, P. H. S-phase function of Drosophila cyclin A and its downregulation in G1 phase. Curr. Biol. 7, 488–499 (1997).

    Article  CAS  Google Scholar 

  39. Lehner, C. F. & O'Farrell, P. H. The roles of Drosophila cyclins A and B in mitotic control. Cell 61, 535–547 (1990).

    Article  CAS  Google Scholar 

  40. Vidwans, S. J. & Su, T. T. Cycling through development in Drosophila and other metazoa. Nature Cell Biol. 3, E35–E39 (2001).

  41. Wu, L. et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414, 457–462 (2001).

    Article  CAS  Google Scholar 

  42. Leone, G. et al. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 12, 2120–2130 (1998).

    Article  CAS  Google Scholar 

  43. Sudo, T. et al. Activation of Cdh1-dependent APC is required for G(1) cell cycle arrest and DNA damage-induced G(2) checkpoint in vertebrate cells. EMBO J. 20, 6499–6508 (2001).

    Article  CAS  Google Scholar 

  44. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  45. Cenciarelli, C. et al. Identification of a family of human F-box proteins. Curr. Biol. 9, 1177–1179 (1999).

    Article  CAS  Google Scholar 

  46. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001).

    Article  CAS  Google Scholar 

  47. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001).

    Article  CAS  Google Scholar 

  48. Cortez, D., Guntuku, S., Qin, J. & Elledge, S. J. ATR and ATRIP: Partners in Checkpoint Signaling. Science 294, 1713–1716 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Wang, J. Peters, T. Hunt, M. Pagano, L. Furstenthal, A. Eldridge, A. Salic, K. Helin, and Clontech for providing important reagents, C. Crumpton for flow cytometric sorting and analysis, A. Bogale for assistance in cell culture, C. Lukas for microinjection experiments, A. Eldridge for critical reading of the manuscript, J. Chao for the TFSEARCH referral, and K. Helin, F. Sprenger, and T. Tuschl for communicating unpublished results. This research is supported by a Cancer Biology Training Grant CA09302 and a Howard Hughes Medical Institute Predoctoral Fellowship to J.Y.H., a National Institute of General Medical Sciences Medical Scientist Training Grant GM07365 to J.D.R.R., the Danish Cancer Society and the Danish Medical Research Council to C.S.S. and J.L., and National Institutes of Health grants GM54811 and GM60439 to P.K.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Jackson.

Supplementary information

Figure S1 Sequence and E2F consensus sites of the hEmi1 promoter.

Figure S2 hEmi1 transcripts are upregulated in various tumors. (PDF 303 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, J., Reimann, J., Sørensen, C. et al. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APCCdh1. Nat Cell Biol 4, 358–366 (2002). https://doi.org/10.1038/ncb785

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb785

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing