Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex

Abstract

Mammalian Dock180 and ELMO proteins, and their homologues in Caenorhabditis elegans and Drosophila melanogaster, function as critical upstream regulators of Rac during development and cell migration. The mechanism by which Dock180 or ELMO mediates Rac activation is not understood. Here, we identify a domain within Dock180 (denoted Docker) that specifically recognizes nucleotide-free Rac and can mediate GTP loading of Rac in vitro. The Docker domain is conserved among known Dock180 family members in metazoans and in a yeast protein. In cells, binding of Dock180 to Rac alone is insufficient for GTP loading, and a Dock180–ELMO1 interaction is required. We can also detect a trimeric ELMO1–Dock180–Rac1 complex and ELMO augments the interaction between Dock180 and Rac. We propose that the Dock180–ELMO complex functions as an unconventional two-part exchange factor for Rac.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A region of Dock180 is critical for Rac-GEF activity.
Figure 2: Rac-GEF activity in the ELMO1–Dock180 complex correlates with synergy during phagocytosis.
Figure 3: Identification of a novel domain within Dock180 homologues.
Figure 4: The Docker domain is sufficient to mediate nucleotide loading of Rac1 in vitro.
Figure 5: Docker domain mutations in Dock180 affect Rac binding, GTP-loading and phagocytosis.
Figure 6: A Dock-ISP mutant fails to promote membrane ruffling.
Figure 7: The Dock180–ELMO1 interaction is essential for the function of the Dock180–ELMO1 complex.
Figure 8: ELMO1 promotes the interaction between Dock180 and Rac.

Similar content being viewed by others

References

  1. Hasegawa, H. et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell Biol. 16, 1770–1776 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheresh, D. A., Leng, J. & Klemke, R. L. Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. J. Cell Biol. 146, 1107–1116 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klemke, R. L. et al. CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J. Cell Biol. 140, 961–972 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kiyokawa, E. et al. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12, 3331–3336 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kiyokawa, E., Hashimoto, Y., Kurata, T., Sugimura, H. & Matsuda, M. Evidence that DOCK180 up-regulates signals from the CrkII–p130(Cas) complex. J. Biol. Chem. 273, 24479–24484 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Albert, M., Kim, J. & Birge, R. αvβ5 integrin recruits the CrkII–Dock180–Rac1 complex for phagocytosis of apoptotic cells. Nature Cell Biol. 2, 899–905 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Gumienny, T. L. et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107, 17–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Erickson, M. R., Galletta, B. J. & Abmayr, S. M. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J. Cell Biol. 138, 589–603 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nolan, K. M. et al. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 12, 3337–3342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131–136 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Y. C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, Y. C., Tsai, M. C., Cheng, L. C., Chou, C. J. & Weng, N. Y. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev. Cell 1, 491–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, Z., Caron, E., Hartwieg, E., Hall, A. & Horvitz, H. R. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev. Cell 1, 477–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Lundquist, E. A., Reddien, P. W., Hartwieg, E., Horvitz, H. R. & Bargmann, C. I. Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128, 4475–4488 (2001).

    CAS  PubMed  Google Scholar 

  17. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Ridley, A. Rho family proteins: Coordinating cellular responses. Trends Cell Biol. 11, 471–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Cerione, R. A. & Zheng, Y. The Dbl family of oncogenes. Curr. Opin. Cell Biol. 8, 216–222 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Hart, M. J., Eva, A., Evans, T., Aaronson, S. A. & Cerione, R. A. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 354, 311–314 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi, S. et al. Membrane recruitment of DOCK180 by binding to PtdIns(3,4,5)P3. Biochem J. 354, 73–78 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishihara, H. et al. Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins. Biochim. Biophys. Acta 1452, 179–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Worthylake, D. K., Rossman, K. L. & Sondek, J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408, 682–688 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, X. et al. NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Cell 95, 269–277 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Soisson, S. M., Nimnual, A. S., Uy, M., Bar-Sagi, D. & Kuriyan, J. Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Cell 95, 259–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Aghazadeh, B. et al. Structure and mutagenesis of the Dbl homology domain. Nature Struct. Biol. 5, 1098–1107 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Shinohara, M. et al. SWAP-70 is a guanine-nucleotide-exchange factor that mediates signalling of membrane ruffling. Nature 416, 759–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Snyder, J. T. et al. Quantitative analysis of the effect of phosphoinositide interactions on the function of Dbl family proteins. J. Biol. Chem. 276, 45868–45875 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Walk, S. F., March, M. E. & Ravichandran, K. S. Roles of Lck, Syk and ZAP-70 tyrosine kinases in TCR-mediated phosphorylation of the adapter protein Shc. Eur. J. Immunol. 28, 2265–2275 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Nemergut, M. E., Mizzen, C. A., Stukenberg, T., Allis, C. D. & Macara, I. G. Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science 292, 1540–1543 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Tosello-Trampont, A., Brugnera, E. & Ravichandran, K. S. Evidence for a conserved role for CrkII and Rac in engulfment of apoptotic cells. J. Biol. Chem. 276, 13797–13802 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Casanova, T. Parsons and U. Lorenz for critically reading the manuscript and members of the Ravichandran laboratory for helpful suggestions and comments. We thank C. Der and T. Karnoub for generously providing us with the RacW56F mutant. This work was supported in part by an American Cancer Society grant to K.S.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodimangalam S. Ravichandran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figure

Supplemental Figure 1. Coprecipitation of Docker domain with GST-Rac. (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugnera, E., Haney, L., Grimsley, C. et al. Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nat Cell Biol 4, 574–582 (2002). https://doi.org/10.1038/ncb824

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb824

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing