Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolite damage and its repair or pre-emption

Abstract

It is increasingly evident that metabolites suffer various kinds of damage, that such damage happens in all organisms and that cells have dedicated systems for damage repair and containment. First, chemical biology is demonstrating that diverse metabolites are damaged by side reactions of 'promiscuous' enzymes or by spontaneous chemical reactions, that the products are useless or toxic and that the unchecked buildup of these products can be devastating. Second, genetic and genomic evidence from prokaryotes and eukaryotes is implicating a network of new, conserved enzymes that repair damaged metabolites or somehow pre-empt damage. Metabolite (that is, small-molecule) repair is analogous to macromolecule (DNA and protein) repair and seems from comparative genomic evidence to be equally widespread. Comparative genomics also implies that metabolite repair could be the function of many conserved protein families lacking known activities. How—and how well—cells deal with metabolite damage affects fields ranging from medical genetics to metabolic engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Damage-control systems in biology.
Figure 2: Coenzyme damage and repair reactions.
Figure 3: Pathway intermediate damage and repair reactions.
Figure 4: Damage pre-emption mechanisms.
Figure 5: Clustering patterns of some bacterial metabolite repair genes.

Similar content being viewed by others

References

  1. Golubev, A.G. The other side of metabolism: a review. Biochemistry (Mosc.) 61, 2018–2039 (1996).

    CAS  Google Scholar 

  2. Tawfik, D.S. Messy biology and the origins of evolutionary innovations. Nat. Chem. Biol. 6, 692–696 (2010).

    PubMed  Google Scholar 

  3. Van Schaftingen, E., Rzem, R. & Veiga-da-Cunha, M. L-2-Hydroxyglutaric aciduria, a disorder of metabolite repair. J. Inherit. Metab. Dis. 32, 135–142 (2009).

    CAS  PubMed  Google Scholar 

  4. Vinci, C.R. & Clarke, S.G. Homocysteine methyltransferases Mht1 and Sam4 prevent the accumulation of age-damaged (R,S)-AdoMet in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 285, 20526–20531 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. D'Ari, R. & Casadesús, J. Underground metabolism. Bioessays 20, 181–186 (1998).

    CAS  PubMed  Google Scholar 

  6. O'Brien, P.J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105 (1999).

    CAS  PubMed  Google Scholar 

  7. Andersson, I. Catalysis and regulation in Rubisco. J. Exp. Bot. 59, 1555–1568 (2008).

    CAS  PubMed  Google Scholar 

  8. Richard, J.P. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction's physiological significance. Biochemistry 30, 4581–4585 (1991).

    CAS  PubMed  Google Scholar 

  9. Kochhar, S. & Christen, P. Mechanism of racemization of amino acids by aspartate aminotransferase. Eur. J. Biochem. 203, 563–569 (1992).

    CAS  PubMed  Google Scholar 

  10. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    CAS  PubMed  Google Scholar 

  11. Marbaix, A.Y. et al. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair. J. Biol. Chem. 286, 41246–41252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fiehn, O., Barupal, D.K. & Kind, T. Extending biochemical databases by metabolomic surveys. J. Biol. Chem. 286, 23637–23643 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Peterhansel, C. & Maurino, V.G. Photorespiration redesigned. Plant Physiol. 155, 49–55 (2011).

    CAS  PubMed  Google Scholar 

  14. Thornalley, P.J. Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation. Biochem. Soc. Trans. 31, 1343–1348 (2003).

    CAS  PubMed  Google Scholar 

  15. Galperin, M.Y., Moroz, O.V., Wilson, K.S. & Murzin, A.G. House cleaning, a part of good housekeeping. Mol. Microbiol. 59, 5–19 (2006).

    CAS  PubMed  Google Scholar 

  16. Moroz, O.V. et al. Dimeric dUTPases, HisE, and MazG belong to a new superfamily of all-a NTP pyrophosphohydrolases with potential “house-cleaning” functions. J. Mol. Biol. 347, 243–255 (2005).

    CAS  PubMed  Google Scholar 

  17. Bessman, M.J., Frick, D.N. & O'Handley, S.F. The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J. Biol. Chem. 271, 25059–25062 (1996).

    CAS  PubMed  Google Scholar 

  18. Aussel, L. et al. Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst. Mol. Microbiol. 80, 628–640 (2011).

    CAS  PubMed  Google Scholar 

  19. Jenkins, A.L., Zhang, Y., Ealick, S.E. & Begley, T.P. Mutagenesis studies on TenA: a thiamin salvage enzyme from Bacillus subtilis. Bioorg. Chem. 36, 29–32 (2008).

    CAS  PubMed  Google Scholar 

  20. Linster, C.L. et al. Ethylmalonyl-CoA decarboxylase, a new enzyme involved in metabolite proofreading. J. Biol. Chem. 286, 42992–43003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rafter, G.W., Chaykin, S. & Krebs, E.G. The action of glyceraldehyde-3-phosphate dehydrogenase on reduced diphosphopyridine nucleotide. J. Biol. Chem. 208, 799–811 (1954).

    CAS  PubMed  Google Scholar 

  22. Oppenheimer, N.J. & Kaplan, N.O. Glyceraldehyde-3-phosphate dehydrogenase catalyzed hydration of the 5-6 double bond of reduced β-nicotinamide adenine dinucleotide (β-NADH). Formation of β-6-hydroxy-1,4,5,6-tetrahydronicotinamide adenine dinucleotide. Biochemistry 13, 4685–4694 (1974).

    CAS  PubMed  Google Scholar 

  23. Yoshida, A. & Dave, V. Inhibition of NADP-dependent dehydrogenases by modified products of NADPH. Arch. Biochem. Biophys. 169, 298–303 (1975).

    CAS  PubMed  Google Scholar 

  24. Acheson, S.A., Kirkman, H.N. & Wolfenden, R. Equilibrium of 5,6-hydration of NADH and mechanism of ATP-dependent dehydration. Biochemistry 27, 7371–7375 (1988).

    CAS  PubMed  Google Scholar 

  25. Aravind, L. Guilt by association: contextual information in genome analysis. Genome Res. 10, 1074–1077 (2000).

    CAS  PubMed  Google Scholar 

  26. Stover, P. & Schirch, V. The metabolic role of leucovorin. Trends Biochem. Sci. 18, 102–106 (1993).

    CAS  PubMed  Google Scholar 

  27. Baggott, J.E. Hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate at pH 2.5 to 4.5. Biochemistry 39, 14647–14653 (2000).

    CAS  PubMed  Google Scholar 

  28. Jeanguenin, L. et al. Moonlighting glutamate formiminotransferases can functionally replace 5-formyltetrahydrofolate cycloligase. J. Biol. Chem. 285, 41557–41566 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoffman, J.L. Chromatographic analysis of the chiral and covalent instability of S-adenosyl-L-methionine. Biochemistry 25, 4444–4449 (1986).

    CAS  PubMed  Google Scholar 

  30. Vinci, C.R. & Clarke, S.G. Recognition of age-damaged (R,S)-adenosyl-L-methionine by two methyltransferases in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 282, 8604–8612 (2007).

    CAS  PubMed  Google Scholar 

  31. Rzem, R., Vincent, M.F., Van Schaftingen, E. & Veiga-da-Cunha, M. L-2-Hydroxyglutaric aciduria, a defect of metabolite repair. J. Inherit. Metab. Dis. 30, 681–689 (2007).

    CAS  PubMed  Google Scholar 

  32. Wright, S.K. & Viola, R.E. Alteration of the specificity of malate dehydrogenase by chemical modulation of an active site arginine. J. Biol. Chem. 276, 31151–31155 (2001).

    CAS  PubMed  Google Scholar 

  33. Rzem, R., Van Schaftingen, E. & Veiga-da-Cunha, M. The gene mutated in L-2-hydroxyglutaric aciduria encodes L-2-hydroxyglutarate dehydrogenase. Biochimie 88, 113–116 (2006).

    CAS  PubMed  Google Scholar 

  34. Kalliri, E., Mulrooney, S.B. & Hausinger, R.P. Identification of Escherichia coli YgaF as an L-2-hydroxyglutarate oxidase. J. Bacteriol. 190, 3793–3798 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Topçu, M. et al. L-2-Hydroxyglutaric aciduria: identification of a mutant gene C14orf160, localized on chromosome 14q22.1. Hum. Mol. Genet. 13, 2803–2811 (2004).

    PubMed  Google Scholar 

  36. Kranendijk, M., Struys, E.A., Salomons, G.S., Van der Knaap, M.S. & Jakobs, C. Progress in understanding 2-hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 35, 571–587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, G. & Winkler, M.E. A novel α-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J. Bacteriol. 178, 232–239 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Achouri, Y. et al. Identification of a dehydrogenase acting on D-2-hydroxyglutarate. Biochem. J. 381, 35–42 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaufman, E.E., Nelson, T., Fales, H.M. & Levin, D.M. Isolation and characterization of a hydroxyacid-oxoacid transhydrogenase from rat kidney mitochondria. J. Biol. Chem. 263, 16872–16879 (1988).

    CAS  PubMed  Google Scholar 

  40. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kranendijk, M. et al. IDH2 mutations in patients with D-2-hydroxyglutaric aciduria. Science 330, 336 (2010).

    CAS  PubMed  Google Scholar 

  42. Struys, E.A. et al. Mutations in the D-2-hydroxyglutarate dehydrogenase gene cause D-2-hydroxyglutaric aciduria. Am. J. Hum. Genet. 76, 358–360 (2005).

    CAS  PubMed  Google Scholar 

  43. Waite, M. & Wakil, S.J. Studies on the mechanism of fatty acid synthesis. XII. Acetyl coenzyme A carboxylase. J. Biol. Chem. 237, 2750–2757 (1962).

    CAS  PubMed  Google Scholar 

  44. Fujii, T., Mukaihara, M., Agematu, H. & Tsunekawa, H. Biotransformation of L-lysine to L-pipecolic acid catalyzed by L-lysine 6-aminotransferase and pyrroline-5-carboxylate reductase. Biosci. Biotechnol. Biochem. 66, 622–627 (2002).

    CAS  PubMed  Google Scholar 

  45. Mills, P.B. et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat. Med. 12, 307–309 (2006).

    CAS  PubMed  Google Scholar 

  46. Struys, E.A. & Jakobs, C. Metabolism of lysine in α-aminoadipic semialdehyde dehydrogenase–deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Lett. 584, 181–186 (2010).

    CAS  PubMed  Google Scholar 

  47. Goyer, A. et al. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J. Biol. Chem. 279, 16947–16953 (2004).

    CAS  PubMed  Google Scholar 

  48. Hagedorn, C.H. & Phang, J.M. Transfer of reducing equivalents into mitochondria by the interconversions of proline and D1-pyrroline-5-carboxylate. Arch. Biochem. Biophys. 225, 95–101 (1983).

    CAS  PubMed  Google Scholar 

  49. Rayapati, P.J., Stewart, C.R. & Hack, E. Pyrroline-5-carboxylate reductase is in pea (Pisum sativum L.) leaf chloroplasts. Plant Physiol. 91, 581–586 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ning, B. & Elbein, A.D. Cloning, expression and characterization of the pig liver GDP-mannose pyrophosphorylase. Evidence that GDP-mannose and GDP-Glc pyrophosphorylases are different proteins. Eur. J. Biochem. 267, 6866–6874 (2000).

    CAS  PubMed  Google Scholar 

  51. Adler, L.N., Gomez, T.A., Clarke, S.G. & Linster, C.L. A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals. J. Biol. Chem. 286, 21511–21523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Linster, C.L. et al. Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J. Biol. Chem. 282, 18879–18885 (2007).

    CAS  PubMed  Google Scholar 

  53. Lambrecht, J.A., Flynn, J.M. & Downs, D.M. Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions. J. Biol. Chem. 287, 3454–3461 (2012).

    CAS  PubMed  Google Scholar 

  54. Choe, E., Huang, R. & Min, D.B. Chemical reactions and stability of riboflavin in foods. J. Food Sci. 70, R28–R36 (2005).

    CAS  Google Scholar 

  55. Grininger, M., Zeth, K. & Oesterhelt, D. Dodecins: a family of lumichrome binding proteins. J. Mol. Biol. 357, 842–857 (2006).

    CAS  PubMed  Google Scholar 

  56. Grininger, M., Staudt, H., Johansson, P., Wachtveitl, J. & Oesterhelt, D. Dodecin is the key player in flavin homeostasis of archaea. J. Biol. Chem. 284, 13068–13076 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Burow, M., Markert, J., Gershenzon, J. & Wittstock, U. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS J. 273, 2432–2446 (2006).

    CAS  PubMed  Google Scholar 

  58. Keeley, J.E. & Rundel, P.W. Evolution of CAM and C4 carbon-concentrating mechanisms. Int. J. Plant Sci. 164 (suppl. 3), S55–S77 (2003).

    CAS  Google Scholar 

  59. Helling, R.B. et al. Toxic waste disposal in Escherichia coli. J. Bacteriol. 184, 3699–3703 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nichols, R.J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143–156 (2011).

    CAS  PubMed  Google Scholar 

  61. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed  PubMed Central  Google Scholar 

  62. Goyer, A. et al. 5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves. J. Biol. Chem. 280, 26137–26142 (2005).

    CAS  PubMed  Google Scholar 

  63. Thiele, I. & Palsson, B.Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Seaver, S.M., Henry, C.S. & Hanson, A.D. Frontiers in metabolic reconstruction and modeling of plant genomes. J. Exp. Bot. 63, 2247–2258 (2012).

    CAS  PubMed  Google Scholar 

  65. Waller, J.C. et al. A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life. Proc. Natl. Acad. Sci. USA 107, 10412–10417 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Galperin, M.Y. & Koonin, E.V. From complete genome sequence to 'complete' understanding? Trends Biotechnol. 28, 398–406 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gerdes, S. et al. Synergistic use of plant-prokaryote comparative genomics for functional annotations. BMC Genomics 12 (suppl. 1), S2 (2011).

    PubMed  PubMed Central  Google Scholar 

  68. Chowdhury, R. et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 12, 463–469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Copley, S.D., Smith, E. & Morowitz, H.J. How life began: the emergence of sparse metabolic networks. J. Cosmol. 10, 3345–3361 (2010).

    Google Scholar 

  70. Kruschwitz, H.L., McDonald, D., Cossins, E.A. & Schirch, V. 5-Formyltetrahydropteroylpolyglutamates are the major folate derivatives in Neurospora crassa conidiospores. J. Biol. Chem. 269, 28757–28763 (1994).

    CAS  PubMed  Google Scholar 

  71. Andreou, A., Brodhun, F. & Feussner, I. Biosynthesis of oxylipins in non-mammals. Prog. Lipid Res. 48, 148–170 (2009).

    CAS  PubMed  Google Scholar 

  72. Gould, S.J. & Lewontin, R.C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B Biol. Sci. 205, 581–598 (1979).

    CAS  PubMed  Google Scholar 

  73. Izumi, Y., Tani, Y. & Ogata, K. The conversion of bisnorbiotin and bisnordethiobiotin to biotin and dethiobiotin, respectively, by microorganisms. Biochim. Biophys. Acta 326, 485–488 (1973).

    CAS  PubMed  Google Scholar 

  74. Pierson, D.E. & Campbell, A. Cloning and nucleotide sequence of bisC, the structural gene for biotin sulfoxide reductase in Escherichia coli. J. Bacteriol. 172, 2194–2198 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bertoldi, M. & Voltattorni, C.B. Dopa decarboxylase exhibits low pH half-transaminase and high pH oxidative deaminase activities toward serotonin (5-hydroxytryptamine). Protein Sci. 10, 1178–1186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. di Salvo, M.L., Safo, M.K., Musayev, F.N., Bossa, F. & Schirch, V. Structure and mechanism of Escherichia coli pyridoxine 5′-phosphate oxidase. Biochim. Biophys. Acta 1647, 76–82 (2003).

    CAS  PubMed  Google Scholar 

  77. Fukui, S., Ohishi, N., Kishimoto, N., Takamizawa, A. & Hamazima, Y. Formation of “thiaminosuccinic acid” as an intermediate in the transformation of oxythiamine to thiamine by a thiamineless mutant of Escherichia coli. J. Biol. Chem. 240, 1315–1321 (1965).

    CAS  PubMed  Google Scholar 

  78. Gangolf, M., Wins, P., Thiry, M., El Moualij, B. & Bettendorff, L. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain. J. Biol. Chem. 285, 583–594 (2010).

    CAS  PubMed  Google Scholar 

  79. Lakaye, B. et al. Molecular characterization of a specific thiamine triphosphatase widely expressed in mammalian tissues. J. Biol. Chem. 277, 13771–13777 (2002).

    CAS  PubMed  Google Scholar 

  80. Cooper, A.J. The role of glutamine transaminase K (GTK) in sulfur and α-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Neurochem. Int. 44, 557–577 (2004).

    CAS  PubMed  Google Scholar 

  81. Kabil, O. & Banerjee, R. Redox biochemistry of hydrogen sulfide. J. Biol. Chem. 285, 21903–21907 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Sikora, M. & Jakubowski, H. Homocysteine editing and growth inhibition in Escherichia coli. Microbiology 155, 1858–1865 (2009).

    CAS  PubMed  Google Scholar 

  83. Lee, B.C. & Gladyshev, V.N. The biological significance of methionine sulfoxide stereochemistry. Free Radic. Biol. Med. 50, 221–227 (2011).

    CAS  PubMed  Google Scholar 

  84. Drozak, J., Veiga-da-Cunha, M., Vertommen, D., Stroobant, V. & Van Schaftingen, E. Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J. Biol. Chem. 285, 9346–9356 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kozmin, S.G., Leroy, P., Pavlov, Y.I. & Schaaper, R.M. YcbX and yiiM, two novel determinants for resistance of Escherichia coli to N-hydroxylated base analogues. Mol. Microbiol. 68, 51–65 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kotthaus, J. et al. Reduction of Nw-hydroxy-L-arginine by the mitochondrial amidoxime reducing component (mARC). Biochem. J. 433, 383–391 (2011).

    CAS  PubMed  Google Scholar 

  87. Tagliabracci, V.S. et al. Phosphate incorporation during glycogen synthesis and Lafora disease. Cell Metab. 13, 274–282 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Cai, H., Strouse, J., Dumlao, D., Jung, M.E. & Clarke, S. Distinct reactions catalyzed by bacterial and yeast trans-aconitate methyltransferases. Biochemistry 40, 2210–2219 (2001).

    CAS  PubMed  Google Scholar 

  89. Cai, H. & Clarke, S. A novel methyltransferase catalyzes the methyl esterification of trans-aconitate in Escherichia coli. J. Biol. Chem. 274, 13470–13479 (1999).

    CAS  PubMed  Google Scholar 

  90. Cai, H., Dumlao, D., Katz, J.E. & Clarke, S. Identification of the gene and characterization of the activity of the trans-aconitate methyltransferase from Saccharomyces cerevisiae. Biochemistry 40, 13699–13709 (2001).

    CAS  PubMed  Google Scholar 

  91. Andralojc, P.J. et al. 2-Carboxy-D-arabinitol 1-phosphate (CA1P) phosphatase: evidence for a wider role in plant Rubisco regulation. Biochem. J. 442, 733–742 (2012).

    CAS  PubMed  Google Scholar 

  92. Aon, J.C. et al. Suppressing posttranslational gluconoylation of heterologous proteins by metabolic engineering of Escherichia coli. Appl. Environ. Microbiol. 74, 950–958 (2008).

    CAS  PubMed  Google Scholar 

  93. Saito, N. et al. Metabolite profiling reveals YihU as a novel hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism in Escherichia coli. J. Biol. Chem. 284, 16442–16451 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fuhrer, T., Chen, L., Sauer, U. & Vitkup, D. Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J. Bacteriol. 189, 8073–8078 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, K.S. et al. The Rut pathway for pyrimidine degradation: novel chemistry and toxicity problems. J. Bacteriol. 192, 4089–4102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Matsunaga, T., Shintani, S. & Hara, A. Multiplicity of mammalian reductases for xenobiotic carbonyl compounds. Drug Metab. Pharmacokinet. 21, 1–18 (2006).

    CAS  PubMed  Google Scholar 

  97. Stefani, M., Taddei, N. & Ramponi, G. Insights into acylphosphatase structure and catalytic mechanism. Cell. Mol. Life Sci. 53, 141–151 (1997).

    CAS  PubMed  Google Scholar 

  98. Harms, N., Ras, J., Reijnders, W.N., van Spanning, R.J. & Stouthamer, A.H. S-Formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification? J. Bacteriol. 178, 6296–6299 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kato, N., Yamagami, T., Shimao, M. & Sakazawa, C. Formaldehyde dismutase, a novel NAD-binding oxidoreductase from Pseudomonas putida F61. Eur. J. Biochem. 156, 59–64 (1986).

    CAS  PubMed  Google Scholar 

  100. Murdanoto, A.P. et al. Purification and properties of methyl formate synthase, a mitochondrial alcohol dehydrogenase, participating in formaldehyde oxidation in methylotrophic yeasts. Appl. Environ. Microbiol. 63, 1715–1720 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research on metabolite damage control is supported by the US National Science Foundation (award no. MCB-1153413 to A.D.H.), the Fonds National de la Recherche Scientifique (to E.V.S. and C.L.L.), the Walloon Region (WELBIO to E.V.S.) and the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 276814 (to C.L.L.). We thank M. Stitt, J.R. Roth and T.P. Begley for insightful discussions and V. de Crécy-Lagard, O. Fiehn and C.S. Henry for critically reading this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emile Van Schaftingen or Andrew D Hanson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linster, C., Van Schaftingen, E. & Hanson, A. Metabolite damage and its repair or pre-emption. Nat Chem Biol 9, 72–80 (2013). https://doi.org/10.1038/nchembio.1141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing