Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibitor hijacking of Akt activation

Abstract

The kinase Akt plays a central role as a regulator of multiple growth factor input signals, thus making it an attractive anticancer drug target. A-443654 is an ATP-competitive Akt inhibitor. Unexpectedly, treatment of cells with A-443654 causes paradoxical hyperphosphorylation of Akt at its two regulatory sites (Thr308 and Ser473). We explored whether inhibitor-induced hyperphosphorylation of Akt by A-443654 is a consequence of disrupted feedback regulation at a pathway level or whether it is a direct consequence of inhibitor binding to the ATP binding site of Akt. Catalytically inactive mutants of Akt revealed that binding of an inhibitor to the ATP site of Akt is sufficient to directly cause hyperphosphorylation of the kinase in the absence of any pathway feedback effects. We conclude that ATP-competitive Akt inhibitors impart regulatory phosphorylation of their target kinase Akt. These results provide new insights into both natural regulation of Akt activation and Akt inhibitors entering the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical genetic strategy for achieving Akt-specific inhibition.
Figure 2: Cellular effects of asAkt transfection and asAkt-specific inhibitor treatment.
Figure 3: Pharmacological and genetic dissection of upstream regulators of Akt inhibitor-induced Akt hyperphosphorylation.
Figure 4: Hyperphosphorylation is independent of Akt signaling and results from inhibitor binding to Akt.
Figure 5: The Akt inhibitor A-443654 induces Akt membrane localization.
Figure 6: Hyperphosphorylated Akt is hyperactive in vitro after dissociation of Akt inhibitor.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Engelman, J.A., Luo, J. & Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 7, 606–619 (2006).

    Article  CAS  Google Scholar 

  2. Manning, B.D. & Cantley, L.C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  Google Scholar 

  3. Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y. & Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4, 988–1004 (2005).

    Article  CAS  Google Scholar 

  4. Alessi, D.R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr. Biol. 7, 261–269 (1997).

    Article  CAS  Google Scholar 

  5. Stokoe, D. et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277, 567–570 (1997).

    Article  CAS  Google Scholar 

  6. Alessi, D.R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551 (1996).

    Article  CAS  Google Scholar 

  7. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  Google Scholar 

  8. Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol. 4, 691–699 (2008).

    Article  CAS  Google Scholar 

  9. Carpten, J.D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007).

    Article  CAS  Google Scholar 

  10. Shor, A.C., Agresta, S.V., D'Amato, G.Z. & Sondak, V.K. Therapeutic potential of directed tyrosine kinase inhibitor therapy in sarcomas. Cancer Control 15, 47–54 (2008).

    Article  Google Scholar 

  11. Fresno Vara, J.A. et al. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193–204 (2004).

    Article  Google Scholar 

  12. Cheng, J.Q., Lindsley, C.W., Cheng, G.Z., Yang, H. & Nicosia, S.V. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24, 7482–7492 (2005).

    Article  CAS  Google Scholar 

  13. Marone, R., Cmiljanovic, V., Giese, B. & Wymann, M.P. Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim. Biophys. Acta 1784, 159–185 (2008).

    Article  CAS  Google Scholar 

  14. Faivre, S., Kroemer, G. & Raymond, E. Current development of mTOR inhibitors as anticancer agents. Nat. Rev. Drug Discov. 5, 671–688 (2006).

    Article  CAS  Google Scholar 

  15. O'Reilly, K.E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    Article  CAS  Google Scholar 

  16. Shah, O.J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol. 14, 1650–1656 (2004).

    Article  CAS  Google Scholar 

  17. Manning, B.D. et al. Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev. 19, 1773–1778 (2005).

    Article  CAS  Google Scholar 

  18. Um, S.H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    Article  CAS  Google Scholar 

  19. Harrington, L.S. et al. The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–223 (2004).

    Article  CAS  Google Scholar 

  20. Luo, Y. et al. Potent and selective inhibitors of Akt kinases slow the progress of tumors in vivo. Mol. Cancer Ther. 4, 977–986 (2005).

    Article  CAS  Google Scholar 

  21. Han, E.K. et al. Akt inhibitor A-443654 induces rapid Akt Ser-473 phosphorylation independent of mTORC1 inhibition. Oncogene 26, 5655–5661 (2007).

    Article  CAS  Google Scholar 

  22. Wang, L., Harris, T.E., Roth, R.A. & Lawrence, J.C. Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 282, 20036–20044 (2007).

    Article  CAS  Google Scholar 

  23. Vander Haar, E., Lee, S.I., Bandhakavi, S., Griffin, T.J. & Kim, D.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316–323 (2007).

    Article  CAS  Google Scholar 

  24. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  25. Bishop, A.C. et al. Generation of monospecific nanomolar tyrosine kinase inhibitors via a chemical genetic approach. J. Am. Chem. Soc. 121, 627–631 (1999).

    Article  CAS  Google Scholar 

  26. Miller, A.L., Zhang, C., Shokat, K.M. & Lowell, C.A. Generation of a novel system for studying spleen tyrosine kinase function in macrophages and B cells. J. Immunol. 182, 988–998 (2009).

    Article  CAS  Google Scholar 

  27. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  Google Scholar 

  28. Davies, T.G. et al. A structural comparison of inhibitor binding to PKB, PKA and PKA-PKB chimera. J. Mol. Biol. 367, 882–894 (2007).

    Article  CAS  Google Scholar 

  29. Andjelković, M. et al. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272, 31515–31524 (1997).

    Article  Google Scholar 

  30. Meier, R., Alessi, D.R., Cron, P., Andjelkovic, M. & Hemmings, B.A. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bbeta. J. Biol. Chem. 272, 30491–30497 (1997).

    Article  CAS  Google Scholar 

  31. Knight, Z.A. et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125, 733–747 (2006).

    Article  CAS  Google Scholar 

  32. Franke, T.F., Kaplan, D.R., Cantley, L.C. & Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665–668 (1997).

    Article  CAS  Google Scholar 

  33. Feldman, R.I. et al. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J. Biol. Chem. 280, 19867–19874 (2005).

    Article  CAS  Google Scholar 

  34. Anand, N.K. et al. Preparation and structure activity of pyrazolo-pyrimidine derivatives as antitumor agents and kinase modulators. PCT application WO2005117909 (2005).

  35. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002).

    Article  CAS  Google Scholar 

  36. Green, C.J. et al. Use of Akt inhibitor and a drug-resistant mutant validates a critical role for protein kinase B/Akt in the insulin-dependent regulation of glucose and system A amino acid uptake. J. Biol. Chem. 283, 27653–27667 (2008).

    Article  CAS  Google Scholar 

  37. Calleja, V., Laguerre, M., Parker, P.J. & Larijani, B. Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition. PLoS Biol. 7, e17 (2009).

    Article  Google Scholar 

  38. Kumar, S., Jiang, M.S., Adams, J.L. & Lee, J.C. Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase. Biochem. Biophys. Res. Commun. 263, 825–831 (1999).

    Article  CAS  Google Scholar 

  39. Hall-Jackson, C.A. et al. Paradoxical activation of Raf by a novel Raf inhibitor. Chem. Biol. 6, 559–568 (1999).

    Article  CAS  Google Scholar 

  40. Levy, D.S., Kahana, J.A. & Kumar, R. AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood 113, 1723–1729 (2009).

    Article  CAS  Google Scholar 

  41. Heerding, D.A. et al. Identification of 4-(2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a novel inhibitor of AKT kinase. J. Med. Chem. 51, 5663–5679 (2008).

    Article  CAS  Google Scholar 

  42. Calleja, V. et al. Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol. 5, e95 (2007).

    Article  Google Scholar 

  43. Levinson, N.M., Seeliger, M.A., Cole, P.A. & Kuriyan, J. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 134, 124–134 (2008).

    Article  CAS  Google Scholar 

  44. Du, K. & Tsichlis, P.N. Regulation of the Akt kinase by interacting proteins. Oncogene 24, 7401–7409 (2005).

    Article  CAS  Google Scholar 

  45. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  46. Bustelo, X.R., Sauzeau, V. & Berenjeno, I.M. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays 29, 356–370 (2007).

    Article  CAS  Google Scholar 

  47. Papa, F.R., Zhang, C., Shokat, K. & Walter, P. Bypassing a kinase activity with an ATP-competitive drug. Science 302, 1533–1537 (2003).

    Article  CAS  Google Scholar 

  48. Lee, K.P. et al. Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132, 89–100 (2008).

    Article  CAS  Google Scholar 

  49. Korennykh, A.V. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 457, 687–693 (2009).

    Article  CAS  Google Scholar 

  50. Boudeau, J., Miranda-Saavedra, D., Barton, G.J. & Alessi, D.R. Emerging roles of pseudokinases. Trends Cell Biol. 16, 443–452 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Houseman (University of California, San Francisco) for PIK90 synthesis. We thank A. Dar, M. Feldman, A. Garske and A. Statsuk for helpful comments on the manuscript. T.O. was supported by Ajinomoto Co., Inc. D.C.G. is supported by a training grant from the University of California Systemwide Biotechnology Research & Education Program GREAT (Graduate Research and Education in Adaptive bio-Technology) and by a US National Institutes of Health Chemistry and Chemical Biology Training Grant. D.F. thanks the Ernst Schering Stiftung for funding.

Author information

Authors and Affiliations

Authors

Contributions

T.O. designed and synthesized PrIDZ, determined in vitro IC50 values of PrIDZ, 3-IB-PP1 and A-443654, prepared the variants of Akt, measured in vitro kinase activity of Akt variants, performed all cell-based assays for HEK 293, HEK 293T, MiaPaCa-2, MCF-7 and PC-3 cells followed by immunoblotting, and carried out immunofluorescence microscopy experiments. C.Z. designed and synthesized 3-IB-PP1. D.F. synthesized A-443654 and BX-795. D.C.G. and D.F. synthesized DG2, measured in vitro IC50 values of DG2 and conducted cell-based assays for L6 cells followed by immunoblotting. B.A. and R.H. performed Invitrogen SelectScreen kinase profiling assays. T.O. and K.M.S. conceived the experiments and wrote the manuscript, with help from and editing by all the co-authors.

Corresponding author

Correspondence to Kevan M Shokat.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 10339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuzumi, T., Fiedler, D., Zhang, C. et al. Inhibitor hijacking of Akt activation. Nat Chem Biol 5, 484–493 (2009). https://doi.org/10.1038/nchembio.183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing