Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A place for thioether chemistry in cellular copper ion recognition and trafficking

Abstract

Over the last decade, cysteine thiolate ligands have been shown to be critical to the Cu(I) (cuprous) binding chemistry of many cytosolic metallochaperone and metalloregulatory proteins involved in copper physiology. More recently, the thioether group of methionine has begun to emerge as an important Cu(I) ligand for trafficking proteins in more oxidizing cellular environments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four crystallographically characterized small-molecule complexes are shown (gray, C; dark yellow, S; red, O; bronze, Cu), labeled with the copper oxidation state.
Figure 2: Characterized Cu(I) trafficking and sensing coordination sites classified by cellular localization and function.

Rebecca Henretta

References

  1. Finney, L.A. & O'Halloran, T.V. Science 300, 931–936 (2003).

    Article  CAS  Google Scholar 

  2. Rorabacher, D.B. Chem. Rev. 104, 651–697 (2004).

    Article  CAS  Google Scholar 

  3. Zeevi, S. & Tshuva, E.Y. Eur. J. Inorg. Chem. 5369–5376 (2007).

  4. Schafer, F.Q. & Buettner, G.R. Free Radic. Biol. Med. 30, 1191–1212 (2001).

    Article  CAS  Google Scholar 

  5. Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C. & O'Halloran, T.V. Science 284, 805–808 (1999).

    Article  CAS  Google Scholar 

  6. Changela, A. et al. Science 301, 1383–1387 (2003).

    Article  CAS  Google Scholar 

  7. Pufahl, R.A. et al. Science 278, 853–856 (1997).

    Article  CAS  Google Scholar 

  8. Chen, K., Yuldasheva, S., Penner-Hahn, J.E. & O'Halloran, T.V. J. Am. Chem. Soc. 125, 12088–12089 (2003).

    Article  CAS  Google Scholar 

  9. Ralle, M., Cooper, M.J., Lutsenko, S. & Blackburn, N.J. J. Am. Chem. Soc. 120, 13525–13526 (1998).

    Article  CAS  Google Scholar 

  10. DiDonato, M., Hsu, H.F., Narindrasorasak, S., Que, L. & Sarkar, B. Biochemistry 39, 1890–1896 (2000).

    Article  CAS  Google Scholar 

  11. Banci, L., Bertini, I., Del Conte, R., Mangani, S. & Meyer-Klaucke, W. Biochemistry 42, 2467–2474 (2003).

    Article  CAS  Google Scholar 

  12. Wernimont, A.K., Huffman, D.L., Lamb, A.L., O'Halloran, T.V. & Rosenzweig, A.C. Nat. Struct. Biol. 7, 766–771 (2000).

    Article  CAS  Google Scholar 

  13. Arnesano, F. et al. J. Biol. Chem. 276, 41365–41376 (2001).

    Article  CAS  Google Scholar 

  14. Borrelly, G.P.M. et al. Biochem. J. 378, 293–297 (2004).

    Article  CAS  Google Scholar 

  15. Liu, T. et al. Nat. Chem. Biol. 3, 60–68 (2007).

    Article  CAS  Google Scholar 

  16. Cobine, P.A., Pieffel, F. & Winge, D.R. BBA Mol. Cell Res. 1763, 759–772 (2006).

    CAS  Google Scholar 

  17. Balatri, E., Banci, L., Bertini, I., Cantini, F. & Ciofi-Baffoni, S. Structure 11, 1431–1443 (2003).

    Article  CAS  Google Scholar 

  18. Nittis, T., George, G.N. & Winge, D.R. J. Biol. Chem. 276, 42520–42526 (2001).

    Article  CAS  Google Scholar 

  19. Banci, L. et al. Structure 15, 1132–1140 (2007).

    Article  CAS  Google Scholar 

  20. Abajian, C., Yatsunyk, L.A., Ramirez, B.E. & Rosenzweig, A.C. J. Biol. Chem. 279, 53584–53592 (2004).

    Article  CAS  Google Scholar 

  21. Arnesano, F., Balatri, E., Banci, L., Bertini, I. & Winge, D.R. Structure 13, 713–722 (2005).

    Article  CAS  Google Scholar 

  22. Peariso, K., Huffman, D.L., Penner-Hahn, J.E. & O'Halloran, T.V. J. Am. Chem. Soc. 125, 342–343 (2003).

    Article  CAS  Google Scholar 

  23. Arnesano, F., Banci, L., Bertini, I., Mangani, S. & Thompsett, A.R. Proc. Natl. Acad. Sci. USA 100, 3814–3819 (2003).

    Article  CAS  Google Scholar 

  24. Zhang, L., Koay, M., Mahert, M.J., Xiao, Z. & Wedd, A.G. J. Am. Chem. Soc. 128, 5834–5850 (2006).

    Article  CAS  Google Scholar 

  25. Banci, L. et al. Proc. Natl. Acad. Sci. USA 102, 3994–3999 (2005).

    Article  CAS  Google Scholar 

  26. Xue, Y. et al. Nat. Chem. Biol. 4, 107–109 (2008).

    Article  CAS  Google Scholar 

  27. Bagai, I., Liu, W., Rensing, C., Blackburn, N.J. & McEvoy, M.M. J. Biol. Chem. 282, 35695–35702 (2007).

    Article  CAS  Google Scholar 

  28. Fujisawa, K., Imai, S., Kitajima, N. & Moro-oka, Y. Inorg. Chem. 37, 168–169 (1998).

    Article  CAS  Google Scholar 

  29. Garner, C.D., Nicholson, J.R. & Clegg, W. Inorg. Chem. 23, 2148–2150 (1984).

    Article  CAS  Google Scholar 

  30. Ralle, M., Lutsenko, S. & Blackburn, N.J. J. Biol. Chem. 278, 23163–23170 (2003).

    Article  CAS  Google Scholar 

  31. Jiang, J., Nadas, I.A., Kim, M.A. & Franz, K.J., Inorg. Chem. 44, 9787–9794 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by US National Institutes of Health grant GM 38784 (to T.V.O.) a nd by National Research Service Award GM 071129 (to A.V.D.)

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, A., O'Halloran, T. A place for thioether chemistry in cellular copper ion recognition and trafficking. Nat Chem Biol 4, 148–151 (2008). https://doi.org/10.1038/nchembio0308-148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio0308-148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing