Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modification of myocardial substrate use as a therapy for heart failure

Abstract

Despite advances in treatment, chronic heart failure is still associated with significant morbidity and a poor prognosis. The scope for further advances based on additional neurohumoral blockade is small. Effective adjunctive therapies acting via a different cellular mechanism would, therefore, be attractive. Energetic impairment seems to contribute to the pathogenesis of heart failure. The findings from several studies have shown that the so-called metabolic agents could have potential as adjunctive therapies in heart failure. These agents cause a shift in the substrate used by the heart away from free fatty acids, the oxidation of which normally provides around 70% of the energy needed, towards glucose. The oxygen cost of energy generation is lessened when glucose is used as the substrate. In this review we aim to draw attention to the metabolic alteration in heart failure and we present evidence supporting the use of metabolic therapy in heart failure.

Key Points

  • Emerging evidence shows that, irrespective of the etiology, an energetic impairment contributes to the pathogenesis of heart failure

  • Patterns of substrate use in heart failure are complex and depend on species, cause, duration, underlying coronary artery disease, endothelial dysfunction, and the presence of genetic and other comorbidities

  • Myocardial use of fatty acids costs more oxygen per unit of ATP generated than glucose

  • Animal models and small-scale human studies suggest benefits with the use of agents that shift myocardial substrate use from free fatty acids towards glucose, but larger human studies are needed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The glucose–fatty acid cycle in cardiomyocyte mitochondria.
Figure 2: Effects of metabolic agents on myocardial metabolism in cardiomyocyte mitochondria.
Figure 3: The effect of perhexiline treatment in patients with ischemic or nonischemic heart failure.

Similar content being viewed by others

References

  1. Unverferth DV et al. (1988) Human myocardial adenosine triphosphatase activities in health and heart failure. Am Heart J 115: 139–146

    Article  CAS  Google Scholar 

  2. Starling RC et al. (1998) Human myocardial ATP content and in vivo contractile function. Mol Cell Biochem 180: 171–177

    Article  CAS  Google Scholar 

  3. Beer M et al. (2002) Absolute concentrations of high-energy phosphate metabolites in normal hypertrophied and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40: 1267–1274

    Article  CAS  Google Scholar 

  4. Shen W et al. (1999) Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine. Circulation 100: 2113–2118

    Article  CAS  Google Scholar 

  5. Bittl JA and Ingwall JS (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem 260: 3512–3517

    CAS  PubMed  Google Scholar 

  6. Weiss RG et al. (2005) ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci USA 102: 808–813

    Article  CAS  Google Scholar 

  7. Tian R and Ingwall JS (1999) The molecular energetics of the failing heart from animal models—small animal models. Heart Failure Rev 4: 245–253

    Article  CAS  Google Scholar 

  8. Zhang J and Bache R (1999) The molecular energetics of the failing heart from animal models—large animal models. Heart Failure Rev 4: 255–267

    Article  CAS  Google Scholar 

  9. Nakae I et al. (2003) Proton magnetic resonance spectroscopy can detect creatine depletion associated with the progression of heart failure in cardiomyopathy. J Am Coll Cardiol 42: 1587–1593

    Article  CAS  Google Scholar 

  10. De Sousa E et al. (1999) Subcellular creatine kinase alterations. Implications in heart failure. Circ Res 85: 68–76

    Article  CAS  Google Scholar 

  11. Conway MA et al. (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338: 973–976

    Article  CAS  Google Scholar 

  12. Neubauer S et al. (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96: 2190–2196

    Article  CAS  Google Scholar 

  13. Gross WL et al. (1996) Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci USA 93: 5604–5609

    Article  CAS  Google Scholar 

  14. Andrews R et al. (1998) The effect of dietary creatine supplementation on skeletal muscle metabolism in congestive heart failure. Eur Heart J 19: 617–622

    Article  CAS  Google Scholar 

  15. Arany Z et al. (2005) Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab 1: 259–271

    Article  CAS  Google Scholar 

  16. Sack MN et al. (2000) Coordinate regulation of metabolic enzyme encoding genes during cardiac development and following carvedilol therapy in spontaneously hypertensive rats. Cardiovasc Drugs Ther 14: 31–39

    Article  CAS  Google Scholar 

  17. Stanley WC et al. (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33: 243–257

    Article  CAS  Google Scholar 

  18. Stanley WC et al. (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85: 1093–1129

    Article  CAS  Google Scholar 

  19. Kagaya Y et al. (1990) Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation 81: 1353–1361

    Article  CAS  Google Scholar 

  20. Alaoui-Talibi Z et al. (1997) Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine. Am J Physiol 272: H1615–H1624

    PubMed  Google Scholar 

  21. Nikolaidis LA et al. (2004) The development of myocardial insulin resistance in conscious dogs with advanced dilated cardiomyopathy. Cardiovasc Res 61: 297–306

    Article  CAS  Google Scholar 

  22. Lommi J et al. (1998) Free fatty acid kinetics and oxidation in congestive heart failure. Am J Cardiol 81: 45–50

    Article  CAS  Google Scholar 

  23. Taylor M et al. (2001) An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J Nucl Med 42: 55–62

    CAS  PubMed  Google Scholar 

  24. Randle PJ (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 14: 263–283

    Article  CAS  Google Scholar 

  25. Mansson S et al. (2005) 13C imaging—a new diagnostic platform. Eur Radiol 16: 57–67

    Article  Google Scholar 

  26. Myrmel T et al. (1992) Triacylglycerol metabolism in hypoxic, glucose-deprived rat cardiomyocytes. J Mol Cell Cardiol 24: 855–868

    Article  CAS  Google Scholar 

  27. Korvald C et al. (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278: H1345–H1351

    Article  CAS  Google Scholar 

  28. Boehm EA et al. (2001) Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol 280: H977–H983

    Article  CAS  Google Scholar 

  29. Schrauwen P et al. (2003) Uncoupling protein 3 as a mitochondrial fatty acid anion exporter. FASEB J 17: 2272–2274

    Article  CAS  Google Scholar 

  30. Murray AJ et al. (2004) Uncoupling proteins in human heart. Lancet 364: 1786–1788

    Article  CAS  Google Scholar 

  31. Kjekshus JK and Mjos OD (1972) Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J Clin Invest 51: 1767–1776

    Article  CAS  Google Scholar 

  32. Hermann HP et al. (1999) Haemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: an open study. Lancet 353: 1321–1323

    Article  CAS  Google Scholar 

  33. Kantor PF et al. (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86: 580–588

    Article  CAS  Google Scholar 

  34. MacInnes A et al. (2003) The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 93: e26–e32

    Article  CAS  Google Scholar 

  35. Szwed H et al. (2001) Combination treatment in stable effort angina using trimetazidine and metoprolol: results of a randomized, double-blind, multicentre study (TRIMPOL II). TRIMetazidine in POLand. Eur Heart J 22: 2267–2274

    Article  CAS  Google Scholar 

  36. Vitale C et al. (2004) Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart J 25: 1814–1821

    Article  CAS  Google Scholar 

  37. Di Napoli P et al. (2005) Long term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart 91: 161–165

    Article  CAS  Google Scholar 

  38. Rosano GM et al. (2003) Trimetazidine improves left ventricular function in diabetic patients with coronary artery disease: a double-blind placebo-controlled study. Cardiovasc Diabetol 2: 16

    Article  Google Scholar 

  39. Thrainsdottir IS et al. (2004) Effects of trimetazidine on left ventricular function in patients with type 2 diabetes and heart failure. J Cardiovasc Pharmacol 44: 101–108

    Article  CAS  Google Scholar 

  40. McCormack JG et al. (1996) Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation 93: 135–142

    Article  CAS  Google Scholar 

  41. Clarke B et al. (1996) Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol 28: 341–350

    Article  CAS  Google Scholar 

  42. McCullough PA (2005) Chronic angina: new medical options for treatment. Rev Cardiovasc Med 6: 152–161

    PubMed  Google Scholar 

  43. Chandler MP et al. (2002) Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res 91: 278–280

    Article  CAS  Google Scholar 

  44. Sabbah HN et al. (2002) Ranolazine, a partial fatty acid oxidation (pFOX) inhibitor, improves left ventricular function in dogs with chronic heart failure. J Card Fail 8: 416–422

    Article  CAS  Google Scholar 

  45. Leotta G et al. (2005) Relationship between QT interval and cardiovascular risk factors in healthy young subjects. J Hum Hypertens 19: 623–627

    Article  CAS  Google Scholar 

  46. Lionetti V et al. (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66: 454–461

    Article  CAS  Google Scholar 

  47. Greaves P et al. (1984) Cardiac hypertrophy in the dog and rat induced by oxfenicine, an agent which modifies muscle metabolism. Arch Toxicol Suppl 7: S488–S493

    Article  Google Scholar 

  48. Bachmann E and Weber E (1988) Biochemical mechanisms of oxfenicine cardiotoxicity. Pharmacology 36: 238–248

    Article  CAS  Google Scholar 

  49. Abdel-aleem S et al. (1994) Regulation of glucose utilization during the inhibition of fatty acid oxidation in rat myocytes. Horm Metab Res 26: 88–91

    Article  CAS  Google Scholar 

  50. Reaven GM et al. (1988) Additive hypoglycemic effects of drugs that modify free-fatty acid metabolism by different mechanisms in rats with streptozocin-induced diabetes. Diabetes 37: 28–32

    Article  CAS  Google Scholar 

  51. Turcani M and Rupp H (1999) Modification of left ventricular hypertrophy by chronic etomixir treatment. Br J Pharmacol 126: 501–507

    Article  CAS  Google Scholar 

  52. Lopaschuk GD and Spafford M (1989) Response of isolated working hearts to fatty acids and carnitine palmitoyltransferase I inhibition during reduction of coronary flow in acutely and chronically diabetic rats. Circ Res 65: 378–387

    Article  CAS  Google Scholar 

  53. Schmidt-Schweda S and Holubarsch C (2000) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond) 99: 27–35

    Article  CAS  Google Scholar 

  54. Bristow MR et al. (1996) Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation 94: 2807–2816

    Article  CAS  Google Scholar 

  55. Packer M et al. (1996) Double-blind, placebo-controlled study of the effects of carvedilol in patients with moderate to severe heart failure. The PRECISE Trial Prospective Randomized Evaluation of Carvedilol on Symptoms and Exercise. Circulation 94: 2793–2799

    Article  CAS  Google Scholar 

  56. Wallhaus TR et al. (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103: 2441–2446

    Article  CAS  Google Scholar 

  57. Al Hesayen A et al. (2005) Selective versus nonselective β-adrenergic receptor blockade in chronic heart failure: differential effects on myocardial energy substrate utilization. Eur J Heart Fail 7: 618–623

    Article  CAS  Google Scholar 

  58. Jeffrey FM et al. (1995) Direct evidence that perhexiline modifies myocardial substrate utilization from fatty acids to lactate. J Cardiovasc Pharmacol 25: 469–472

    Article  CAS  Google Scholar 

  59. Kennedy JA et al. (1996) Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem Pharmacol 52: 273–280

    Article  CAS  Google Scholar 

  60. Kennedy JA et al. (2000) Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart. J Cardiovasc Pharmacol 36: 794–801

    Article  CAS  Google Scholar 

  61. Horowitz JD and Mashford ML (1979) Perhexiline maleate in the treatment of severe angina pectoris. Med J Aust 1: 485–488

    CAS  PubMed  Google Scholar 

  62. Cole PL et al. (1990) Efficacy and safety of perhexiline maleate in refractory angina. A double-blind placebo-controlled clinical trial of a novel antianginal agent. Circulation 81: 1260–1270

    Article  CAS  Google Scholar 

  63. Pessayre D et al. (1979) Perhexiline maleate-induced cirrhosis. Gastroenterology 76: 170–177

    CAS  PubMed  Google Scholar 

  64. Bouche P et al. (1979) Perhexiline maleate and peripheral neuropathy. Neurology 29: 739–743

    Article  CAS  Google Scholar 

  65. Morgan MY et al. (1984) Impaired oxidation of debrisoquine in patients with perhexiline liver injury. Gut 25: 1057–1064

    Article  CAS  Google Scholar 

  66. Horowitz JD et al. (1986) Perhexiline maleate treatment for severe angina pectoris—correlations with pharmacokinetics. Int J Cardiol 13: 219–229

    Article  CAS  Google Scholar 

  67. Klassen GA et al. (1976) Effects of perhexiline maleate on coronary flow distribution in the ischemic canine myocardium. Circulation 54: 14–20

    Article  CAS  Google Scholar 

  68. Lee L et al. (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized controlled trial of short-term use of a novel treatment. Circulation 112: 3280–3288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Abozguia.

Ethics declarations

Competing interests

Michael Frenneaux has applied for a patent for the use of perhexiline therapy in chronic heart failure patients. The other authors declared they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abozguia, K., Clarke, K., Lee, L. et al. Modification of myocardial substrate use as a therapy for heart failure. Nat Rev Cardiol 3, 490–498 (2006). https://doi.org/10.1038/ncpcardio0583

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0583

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing