Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases

Abstract

The cardiac isoform of the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a) is a calcium ion (Ca2+) pump powered by ATP hydrolysis. SERCA2a transfers Ca2+ from the cytosol of the cardiomyocyte to the lumen of the sarcoplasmic reticulum during muscle relaxation. As such, this transporter has a key role in cardiomyocyte Ca2+ regulation. In both experimental models and human heart failure, SERCA2a expression is significantly decreased, which leads to abnormal Ca2+ handling and a deficient contractile state. Following a long line of investigations in isolated cardiac myocytes and small and large animal models, a clinical trial is underway that is restoring SERCA2a expression in patients with heart failure by use of adeno-associated virus type 1. Beyond its role in contractile abnormalities in heart failure, SERCA2a overexpression has beneficial effects in a host of other cardiovascular diseases. Here we describe the mechanism of Ca2+ regulation by SERCA2a, examine the beneficial effects as well as the failures, risks and complexities associated with SERCA2a overexpression, and discuss the potential of SERCA2a as a target for the treatment of cardiovascular disease.

Key Points

  • The sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a) is an important therapeutic target for gene therapy in various cardiovascular diseases

  • Gene transfer of SERCA2a improves contractility and myocardial energetics in the setting of heart failure

  • Overexpression of SERCA2a has antiproliferative and vasodilatory effects on the vasculature

  • Gene transfer of SERCA2a has antiarrhythmic effects in the setting of calcium overload but its effects on ventricular arrhythmias in other cardiovascular disease states remain to be fully examined

  • The overall beneficial profile of SERCA2a targeting has led to the initiation of the first gene therapy trial to investigate the overexpression of SERCA2a via an adeno-associated vector in patients with heart failure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overexpression of SERCA2a in diseased hearts has been shown to result in the recovery of contractility.
Figure 2: Excitation–contraction coupling in cardiomyocytes.
Figure 3: The regulation of SR function via the adrenergic pathway.
Figure 4: A comparison of energy utilization between a normal and a failing heart and its normalization with SERCA2a overexpression.

Similar content being viewed by others

References

  1. Rosamond W et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2007) Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117: e25–e146

    PubMed  Google Scholar 

  2. Komuro I et al. (1989) Molecular cloning and characterization of a Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum: regulation of its expression by pressure overload and developmental stage. J Clin Invest 83: 1102–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagai R et al. (1989) Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86: 2966–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de la Bastie D et al. (1990) Function of the sarcoplasmic reticulum and expression of its Ca2(+)-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66: 554–564

    Article  CAS  PubMed  Google Scholar 

  5. Mercadier JJ et al. (1990) Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85: 305–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dharmsathaphorn K and Pandol SJ (1986) Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J Clin Invest 77: 348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. del Monte F and Hajjar RJ (2003) Targeting calcium cycling proteins in heart failure through gene transfer. J Physiol 546: 49–61

    Article  CAS  PubMed  Google Scholar 

  8. Mountian I et al. (1999) Expression patterns of sarco/endoplasmic reticulum Ca(2+)-ATPase and inositol 1,4,5-trisphosphate receptor isoforms in vascular endothelial cells. Cell Calcium 25: 371–380

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt U et al. (2000) Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circulation 101: 790–796

    Article  CAS  PubMed  Google Scholar 

  10. Miyamoto MI et al. (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97: 793–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hui HP et al. (2006) Adeno-associated viral gene transfer of SERCA2a improves heart function in chronic congestive heart failure rats [Chinese]. Zhonghua Xin Xue Guan Bing Za Zhi 34: 357–362

    CAS  PubMed  Google Scholar 

  12. Pathak A et al. (2005) Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res 96: 756–766

    Article  CAS  PubMed  Google Scholar 

  13. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415: 198–205

    Article  CAS  PubMed  Google Scholar 

  14. Carr AN et al. (2002) Type 1 phosphatase, a negative regulator of cardiac function. Mol Cell Biol 22: 4124–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dally S et al. (2006) Ca2+-ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2c). Biochem J 395: 249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lipskaia L and Lompre AM (2004) Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation. Biol Cell 96: 55–68

    Article  CAS  PubMed  Google Scholar 

  17. Loukianov E et al. (1998) Sarco(endo)plasmic reticulum Ca2+ ATPase isoforms and their role in muscle physiology and pathology. Ann N Y Acad Sci 853: 251–259

    Article  CAS  PubMed  Google Scholar 

  18. Brandl CJ et al. (1987) Adult forms of the Ca2+ATPase of sarcoplasmic reticulum: expression in developing skeletal muscle. J Biol Chem 262: 3768–3774

    Article  CAS  PubMed  Google Scholar 

  19. Le Jemtel TH et al. (1993) Age-related changes in sarcoplasmic reticulum Ca(2+)-ATPase and alpha-smooth muscle actin gene expression in aortas of normotensive and spontaneously hypertensive rats. Circ Res 72: 341–348

    Article  CAS  PubMed  Google Scholar 

  20. Lytton J et al. (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267: 14483–14489

    Article  CAS  PubMed  Google Scholar 

  21. Lipskaia L et al. (2005) Sarco/endoplasmic reticulum Ca2+-ATPase gene transfer reduces vascular smooth muscle cell proliferation and neointima formation in the rat. Circ Res 97: 488–495

    Article  CAS  PubMed  Google Scholar 

  22. De Jaegere S et al. (1993) Alternative processing of the gene transcripts encoding a plasma-membrane and a sarco/endoplasmic reticulum Ca2+ pump during differentiation of BC3H1 muscle cells. Biochim Biophys Acta 1173: 188–194

    Article  CAS  PubMed  Google Scholar 

  23. Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66: 710–771

    Article  CAS  PubMed  Google Scholar 

  24. Leberer E et al. (1989) Slow/cardiac sarcoplasmic reticulum Ca2+-ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast-twitch muscle. Eur J Biochem 185: 51–54

    Article  CAS  PubMed  Google Scholar 

  25. Briggs FN et al. (1990) Ca-ATPase isozyme expression in sarcoplasmic reticulum is altered by chronic stimulation of skeletal muscle. FEBS Lett 259: 269–272

    Article  CAS  PubMed  Google Scholar 

  26. MacLennan DH and Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4: 566–577

    Article  CAS  PubMed  Google Scholar 

  27. Schwinger RH et al. (1995) Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92: 3220–3228

    Article  CAS  PubMed  Google Scholar 

  28. Hasenfuss G et al. (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75: 434–442

    Article  CAS  PubMed  Google Scholar 

  29. Arai M et al. (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure: a possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72: 463–469

    Article  CAS  PubMed  Google Scholar 

  30. Frank K et al. (1998) Frequency dependent force generation correlates with sarcoplasmic calcium ATPase activity in human myocardium. Basic Res Cardiol 93: 405–411

    Article  CAS  PubMed  Google Scholar 

  31. del Monte F et al. (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100: 2308–2311

    Article  CAS  PubMed Central  Google Scholar 

  32. Hoshijima M et al. (2002) Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 8: 864–871

    Article  CAS  PubMed  Google Scholar 

  33. O'Donnell JM et al. (2001) Tight control of exogenous SERCA expression is required to obtain acceleration of calcium transients with minimal cytotoxic effects in cardiac myocytes. Circ Res 88: 415–421

    Article  CAS  PubMed  Google Scholar 

  34. Hajjar RJ et al. (1997) Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes: rescue effects by concomitant gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circ Res 81: 145–153

    Article  CAS  PubMed  Google Scholar 

  35. He H et al. (1997) Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 100: 380–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker DL et al. (1998) Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 83: 1205–1214

    Article  CAS  PubMed  Google Scholar 

  37. Loukianov E et al. (1998) Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ Res 83: 889–897

    Article  CAS  PubMed  Google Scholar 

  38. Terracciano CM et al. (2002) Overexpression of SERCA2a accelerates repolarisation in rabbit ventricular myocytes. Cell Calcium 31: 299–305

    Article  CAS  PubMed  Google Scholar 

  39. Du XJ et al. (2000) Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart. Cardiovasc Res 48: 448–454

    Article  CAS  PubMed  Google Scholar 

  40. Liggert SB et al. (2000) Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts. Critical rate for expression level. Circulation 101: 1707–1714

    Article  Google Scholar 

  41. Sakata S et al. (2007) Targeted gene transfer increases contractility and decreases oxygen cost of contractility in normal rat hearts. Am J Physiol Heart Circ Physiol 292: H2356–2363

    Article  CAS  PubMed  Google Scholar 

  42. Sakata S et al. (2007) Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol 42: 852–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ito K et al. (2001) Transgenic expression of sarcoplasmic reticulum Ca(2+) ATPase modifies the transition from hypertrophy to early heart failure. Circ Res 89: 422–429

    Article  CAS  PubMed  Google Scholar 

  44. Trost SU et al. (2002) Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51: 1166–1171

    Article  CAS  PubMed  Google Scholar 

  45. Sakata S et al. (2006) Mechanical and metabolic rescue in a type II diabetes model of cardiomyopathy by targeted gene transfer. Mol Ther 13: 987–996

    Article  CAS  PubMed  Google Scholar 

  46. Kawase Y et al. (2008) Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardio 51: 1112–1119

    Article  CAS  Google Scholar 

  47. Muller OJ et al. (2003) Transgenic rat hearts overexpressing SERCA2a show improved contractility under baseline conditions and pressure overload. Cardiovasc Res 59: 380–389

    Article  CAS  PubMed  Google Scholar 

  48. Chu D et al. (2003) Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors. J Thorac Cardiovasc Surg 126: 671–679

    Article  CAS  PubMed  Google Scholar 

  49. Yang Y et al. (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91: 4407–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yeh P et al. (1996) Efficient dual transcomplementation of adenovirus E1 and E4 regions from a 293-derived cell line expressing a minimal E4 functional unit. J Virol 70: 559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Manno CS et al. (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12: 342–347

    Article  CAS  PubMed  Google Scholar 

  52. Bassani JW et al. (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476: 279–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hasenfuss G (1998) Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37: 279–289

    Article  CAS  PubMed  Google Scholar 

  54. Sakata S et al. (2007) Preservation of mechanical and energetic function after adenoviral gene transfer in normal rat hearts. Clin Exp Pharmacol Physiol 34: 1300–1306

    Article  CAS  PubMed  Google Scholar 

  55. Tabayashi N et al. (2002) Oxygen costs of left ventricular contractility for dobutamine and Ca(2+) in normal rat hearts and the cost for dobutamine in Ca(2+) overload-induced failing hearts. Jpn J Physiol 52: 163–171

    Article  CAS  PubMed  Google Scholar 

  56. del Monte F et al. (2001) Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation 104: 1424–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sami MH (1991) Sudden death in congestive heart failure. J Clin Pharmacol 31: 1081–1084

    Article  CAS  PubMed  Google Scholar 

  58. Rodriguez B et al. (2006) Modeling cardiac ischemia. Ann NY Acad Sci 1080: 395–414

    Article  CAS  PubMed  Google Scholar 

  59. Brooks WW et al. (1995) Reperfusion induced arrhythmias following ischaemia in intact rat heart: role of intracellular calcium. Cardiovasc Res 29: 536–542

    Article  CAS  PubMed  Google Scholar 

  60. Asano G et al. (2003) Pathogenesis and protection of ischemia and reperfusion injury in myocardium. J Nippon Med Sch 70: 384–392

    Article  CAS  PubMed  Google Scholar 

  61. del Monte F et al. (2004) Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc Natl Acad Sci USA 101: 5622–5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matsumura K et al. (2000) Protein kinase C is involved in cardioprotective effects of ischemic preconditioning on infarct size and ventricular arrhythmia in rats in vivo. Mol Cell Biochem 214: 39–45

    Article  CAS  PubMed  Google Scholar 

  63. Chen Y et al. (2004) Constitutive cardiac overexpression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase delays myocardial failure after myocardial infarction in rats at a cost of increased acute arrhythmias. Circulation 109: 1898–1903

    Article  CAS  PubMed  Google Scholar 

  64. Prunier F et al.: Prevention of ventricular arrhythmias with SERCA2a overexpression in a porcine model of ischemia reperfusion. Circulation, in press

  65. Meerson FZ et al. (1987) The role of lipid peroxidation in pathogenesis of arrhythmias and prevention of cardiac fibrillation with antioxidants. Basic Res Cardiol 82: 123–137

    Article  CAS  PubMed  Google Scholar 

  66. Bernier M et al. (1989) Reperfusion arrhythmias: dose-related protection by anti-free radical interventions. Am J Physiol 256: H1344–H1352

    CAS  PubMed  Google Scholar 

  67. Adachi T et al. (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10: 1200–1207

    Article  CAS  PubMed  Google Scholar 

  68. Hiranandani N et al. (2006) SERCA overexpression reduces hydroxyl radical injury in murine myocardium. Am J Physiol Heart Circ Physiol 291: H3130–H3135

    Article  CAS  PubMed  Google Scholar 

  69. Yu J et al. (2006) Insulin improves cardiomyocyte contractile function through enhancement of SERCA2a activity in simulated ischemia/reperfusion. Acta Pharmacol Sin 27: 919–926

    Article  CAS  PubMed  Google Scholar 

  70. Moens AL et al. (2005) Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 100: 179–190

    Article  CAS  PubMed  Google Scholar 

  71. Abbo KM et al. (1995) Features and outcome of no-reflow after percutaneous coronary intervention. Am J Cardiol 75: 778–782

    Article  CAS  PubMed  Google Scholar 

  72. Hadri L et al. (2007) SERCA2a overexpression induces eNOS activation in human coronary artery endothelial cell. Circ Res 101: E65–E65

    Google Scholar 

  73. Bolli R (2001) Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 33: 1897–1918

    Article  CAS  PubMed  Google Scholar 

  74. Li Q et al. (2003) Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism. Circ Res 92: 741–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Adachi T et al. (2002) Antioxidant improves smooth muscle sarco/endoplasmic reticulum Ca(2+)-ATPase function and lowers tyrosine nitration in hypercholesterolemia and improves nitric oxide-induced relaxation. Circ Res 90: 1114–1121

    Article  CAS  PubMed  Google Scholar 

  76. Bolli R (2007) Preconditioning: a paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol 292: H19–H27

    Article  CAS  PubMed  Google Scholar 

  77. Murry CE et al. (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–1136

    Article  CAS  PubMed  Google Scholar 

  78. Canty JM Jr et al. (2004) Hibernating myocardium: chronically adapted to ischemia but vulnerable to sudden death. Circ Res 94: 1142–1149

    Article  CAS  PubMed  Google Scholar 

  79. Fallavollita JA et al. (2004) Spatial heterogeneity of endocardial voltage amplitude in viable, chronically dysfunctional myocardium. Basic Res Cardiol 99: 212–222

    Article  PubMed  Google Scholar 

  80. Canty JM Jr and Fallavollita JA (2005) Hibernating myocardium. J Nucl Cardiol 12: 104–119

    Article  PubMed  Google Scholar 

  81. Fallavollita JA et al. (2005) Mechanism of sudden cardiac death in pigs with viable chronically dysfunctional myocardium and ischemic cardiomyopathy. Am J Physiol Heart Circ Physiol 289: H2688–H2696

    Article  CAS  PubMed  Google Scholar 

  82. Podio V et al. (2002) Prognosis of hibernating myocardium is independent of recovery of function: evidence from a routine based follow-up study. Nucl Med Commun 23: 933–942

    Article  CAS  PubMed  Google Scholar 

  83. Fallavollita JA et al. (1999) Regional alterations in SR Ca(2+)-ATPase, phospholamban, and HSP-70 expression in chronic hibernating myocardium. Am J Physiol 277: H1418–H1428

    CAS  PubMed  Google Scholar 

  84. Wiggers H et al. (2005) Suppressed phospholamban levels differentiate irreversibly dysfunctional from hibernating myocardium in humans. Scand Cardiovasc J 39: 55–59

    Article  CAS  PubMed  Google Scholar 

  85. Deindl E et al. (1998) Reduced contractile function characteristic of hibernating human heart is not mediated by phospholamban. Ann NY Acad Sci 853: 270–272

    Article  CAS  PubMed  Google Scholar 

  86. Kjekshus J (1990) Arrhythmias and mortality in congestive heart failure. Am J Cardiol 65: 42I–48I

    Article  Google Scholar 

  87. Akar FG and Rosenbaum DS (2003) Transmural electrophysiological heterogeneities underlying arrhythmogenesis in heart failure. Circ Res 93: 638–645

    Article  CAS  PubMed  Google Scholar 

  88. Janse MJ (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61: 208–217

    Article  CAS  PubMed  Google Scholar 

  89. Terracciano CM et al. (1997) The effects of changes to action potential duration on the calcium content of the sarcoplasmic reticulum in isolated guinea-pig ventricular myocytes. Pflugers Arch 433: 542–544

    Article  CAS  PubMed  Google Scholar 

  90. Studer R et al. (1994) Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res 75: 443–453

    Article  CAS  PubMed  Google Scholar 

  91. O'Rourke B et al. (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 84: 562–570

    Article  CAS  PubMed  Google Scholar 

  92. Yano M et al. (2000) Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca(2+) leak through ryanodine receptor in heart failure. Circulation 102: 2131–2136

    Article  CAS  PubMed  Google Scholar 

  93. Vermeulen JT et al. (1994) Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc Res 28: 1547–1554

    Article  CAS  PubMed  Google Scholar 

  94. Terracciano CM et al. (2007) The role of the cardiac Na+/Ca2+ exchanger in reverse remodeling: relevance for LVAD-recovery. Ann NY Acad Sci 1099: 349–360

    Article  CAS  PubMed  Google Scholar 

  95. Poelzing S and Rosenbaum DS (2004) Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol 287: H1762–H1770

    Article  CAS  PubMed  Google Scholar 

  96. Akar FG et al. (2004) Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res 95: 717–725

    Article  CAS  PubMed  Google Scholar 

  97. Sakata S et al. (2007) Transcoronary gene transfer of SERCA2a increases coronary blood flow and decreases cardiomyocyte size in a type 2 diabetic rat model. Am J Physiol Heart Circ Physiol 292: H1204–H1207

    Article  CAS  PubMed  Google Scholar 

  98. Madigan JD et al. (2001) Time course of reverse remodeling of the left ventricle during support with a left ventricular assist device. J Thorac Cardiovasc Surg 121: 902–908

    Article  CAS  PubMed  Google Scholar 

  99. Akar FG et al. (2007) Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol 293: H1223–H1230

    Article  CAS  PubMed  Google Scholar 

  100. Wagoner LE and Walsh RA (1996) The cellular pathophysiology of progression to heart failure. Curr Opin Cardiol 11: 237–244

    Article  CAS  PubMed  Google Scholar 

  101. Gupta S et al. (2007) Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid Redox Signal 9: 623–652

    Article  CAS  PubMed  Google Scholar 

  102. Nakayama H et al. (2003) Cardiac-specific overexpression of a high Ca2+ affinity mutant of SERCA2a attenuates in vivo pressure overload cardiac hypertrophy. FASEB J 17: 61–63

    Article  CAS  PubMed  Google Scholar 

  103. Molkentin, JD et al. (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Obata K et al. (2005) Overexpression of calmodulin induces cardiac hypertrophy by a calcineurin-dependent pathway. Biochem Biophys Res Commun 338: 1299–1305

    Article  CAS  PubMed  Google Scholar 

  105. Kuriyama M et al. (2006) A cell-permeable NFAT inhibitor peptide prevents pressure-overload cardiac hypertrophy. Chem Biol Drug Des 67: 238–243

    Article  CAS  PubMed  Google Scholar 

  106. Dolmetsch RE et al. (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386: 855–858

    Article  CAS  PubMed  Google Scholar 

  107. Wu X et al. (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116: 675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol 499: 291–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nelson MT et al. (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270: 633–637

    Article  CAS  PubMed  Google Scholar 

  110. Iino M et al. (1994) Visualization of neural control of intracellular Ca2+ concentration in single vascular smooth muscle cells in situ. EMBO J 13: 5026–5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Miriel VA et al. (1999) Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation. J Physiol 518: 815–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jaggar JH and Nelson MT (2000) Differential regulation of Ca(2+) sparks and Ca(2+) waves by UTP in rat cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 279: C1528–C1539

    Article  CAS  PubMed  Google Scholar 

  113. Vallot O et al. (2000) Intracellular Ca(2+) handling in vascular smooth muscle cells is affected by proliferation. Arterioscler Thromb Vasc Biol 20: 1225–1235

    Article  CAS  PubMed  Google Scholar 

  114. Dolmetsch RE et al. (2001) Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294: 333–339

    Article  CAS  PubMed  Google Scholar 

  115. Cartin L et al. (2000) Coupling of Ca(2+) to CREB activation and gene expression in intact cerebral arteries from mouse : roles of ryanodine receptors and voltage-dependent Ca(2+) channels. Circ Res 86: 760–767

    Article  CAS  PubMed  Google Scholar 

  116. Hardingham GE et al. (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385: 260–265

    Article  CAS  PubMed  Google Scholar 

  117. Gomez MF et al. (2002) Opposing actions of inositol 1,4,5-trisphosphate and ryanodine receptors on nuclear factor of activated T-cells regulation in smooth muscle. J Biol Chem 277: 37756–37764

    Article  CAS  PubMed  Google Scholar 

  118. Lipskaia L et al. (2003) Phosphatidylinositol 3-kinase and calcium-activated transcription pathways are required for VLDL-induced smooth muscle cell proliferation. Circ Res 92: 1115–1122

    Article  CAS  PubMed  Google Scholar 

  119. Lin D et al. (1994) Constitutive expression of B-myb can bypass p53-induced Waf1/Cip1-mediated G1 arrest. Proc Natl Acad Sci USA 91: 10079–10083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Timmerman LA et al. (1996) Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383: 837–840

    Article  CAS  PubMed  Google Scholar 

  121. Levitsky DO et al. (1993) Sarcoplasmic reticulum calcium transport and Ca(2+)-ATPase gene expression in thoracic and abdominal aortas of normotensive and spontaneously hypertensive rats. J Biol Chem 268: 8325–8331

    Article  CAS  PubMed  Google Scholar 

  122. Rudic RD et al. (1998) Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 101: 731–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sato J et al. (2000) eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res 47: 697–706

    Article  CAS  PubMed  Google Scholar 

  124. Amano K et al. (2003) Enhancement of ischemia-induced angiogenesis by eNOS overexpression. Hypertension 41: 156–162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The investigators would like to thank Fadi G Akar, Lahouaria Hadri, Susumu Sakata, Yoshiaki Takewa, Hung Q Ly and Yasuyoshi Suzuki for consultations in their special respective fields. This work was supported in part by grants from the National Institutes of Health: R01 HL078691, HL057263, HL071763, HL080498, & HL083156, and a Leducq Transatlantic Network (RJ Hajjar).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J Hajjar.

Ethics declarations

Competing interests

Y Kawase is a stockholder for Celladon.

RJ Hajjar is a stockholder for and a patent holder/applicant for both Celladon and Nanocor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawase, Y., Hajjar, R. The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases. Nat Rev Cardiol 5, 554–565 (2008). https://doi.org/10.1038/ncpcardio1301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio1301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing