Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Racial and survival paradoxes in chronic kidney disease

Abstract

Most of the 20 million people in the US with chronic kidney disease (CKD) die before commencing dialysis. One of every five dialysis patients dies each year in the US. Although cardiovascular disease is the most common cause of death among patients with CKD, conventional cardiovascular risk factors such as hypercholesterolemia, hypertension and obesity are paradoxically associated with better survival in hemodialysis populations. Emerging data indicate the existence of this 'reverse epidemiology' in earlier stages of CKD. There are also paradoxical relationships between outcomes and race and ethnicity. For example, the survival rate of African American dialysis patients seems to be superior to that of whites on dialysis. Paradoxes-within-paradoxes have been detected among Hispanic and Asian American CKD patients. These survival paradoxes might evolve and change over the natural course of CKD progression as a result of the time differentials of competing risk factors and the overwhelming impact of malnutrition, inflammation and wasting. Reversal of the reverse epidemiology as a result of successful kidney transplantation underscores the role of nutritional status and kidney function in engendering these paradoxes. The observation of paradoxes and their reversal might lead to the formulation of new paradigms and management strategies to improve the survival of patients with CKD. Such movement away from the use of targets set on the basis of data gathered in general populations (e.g. the Framingham cohort) would be a major paradigm shift in clinical medicine and public health.

Key Points

  • 'Reverse epidemiology' describes a phenomenon whereby risk factors associated with adverse outcomes under one set of conditions or in one population are associated with positive outcomes under another set of conditions or in another population

  • For example, higher BMI, serum cholesterol levels and systolic blood pressure are associated with increased cardiovascular risk in the general population, but with reduced morbidity and mortality in patients with stage 5 chronic kidney disease—a so-called 'survival paradox'

  • Survival paradoxes associated with race have been observed in dialysis populations; for example, the mortality of African American patients is markedly lower than that of their white counterparts

  • As many clinical recommendations are based on extrapolation of data from general populations, confirmation of evidence supporting reverse epidemiology in chronic disease populations could necessitate revision of guidelines

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hazard ratio of all-cause mortality associated with different levels of serum total cholesterol in 986 male US veterans with chronic kidney disease stages 1–5 followed up during 1990–200620
Figure 2: Hazard ratio of all-cause mortality associated with different BMIs in the general population (light gray bars) and in a maintenance hemodialysis population (dark gray bars)
Figure 3: Relative risk of cardiovascular death associated with longitudinal changes in the end-dialysis dry weights of 46,629 maintenance hemodialysis patients over a 2-year period28
Figure 4: The hypertension paradox in maintenance hemodialysis patients
Figure 5: Hypothetical evolution of the risk-factor paradoxes (illustrated here by the hypercholesterolemia paradox) over the course of progression of chronic kidney disease
Figure 6: Reversal of reverse epidemiology after successful kidney transplantation in maintenance dialysis patients

Similar content being viewed by others

References

  1. [No authors listed] (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39 (Suppl): S7–S266

  2. [No authors listed] (2006) Excerpts from the United States Renal Data System 2005 Annual Data Report: atlas of end-stage renal disease in the United States. Am J Kidney Dis 47 (Suppl 1): S1–S286

  3. [No authors listed] (2005) Excerpts from the United States Renal Data System 2004 Annual Data Report. Am J Kidney Dis 45 (Suppl 1): S1–S280

  4. Go AS et al. (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351: 1296–1305

    Article  CAS  PubMed  Google Scholar 

  5. Kovesdy CP et al. (2006) Association of kidney function with mortality in patients with chronic kidney disease not yet on dialysis: a historical prospective cohort study. Adv Chronic Kidney Dis 13: 183–188

    Article  PubMed  Google Scholar 

  6. Keith DS et al. (2004) Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med 164: 659–663

    Article  PubMed  Google Scholar 

  7. Muntner P et al. (2005) Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. J Am Soc Nephrol 16: 529–538

    Article  PubMed  Google Scholar 

  8. [No authors listed] (2003) K/DOQI clinical practice guidelines for managing dyslipidemias in chronic kidney disease. Am J Kidney Dis 41 (Suppl 3): S1–S91

  9. [No authors listed] (2005) K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 45 (Suppl 3): S1–S153

  10. Shlipak MG et al. (2005) Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293: 1737–1745

    Article  CAS  PubMed  Google Scholar 

  11. Foley RN et al. (2003) Smoking and cardiovascular outcomes in dialysis patients: the United States Renal Data System Wave 2 study. Kidney Int 63: 1462–1467

    Article  PubMed  Google Scholar 

  12. Kalantar-Zadeh K et al. (2003) Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int 63: 793–808

    Article  PubMed  Google Scholar 

  13. Kopple JD (2005) The phenomenon of altered risk factor patterns or reverse epidemiology in persons with advanced chronic kidney failure. Am J Clin Nutr 81: 1257–1266

    Article  CAS  PubMed  Google Scholar 

  14. Tamashiro M et al. (2001) Significant association between the progression of coronary artery calcification and dyslipidemia in patients on chronic hemodialysis. Am J Kidney Dis 38: 64–69

    Article  CAS  PubMed  Google Scholar 

  15. Shoji T et al. (2002) Advanced atherosclerosis in predialysis patients with chronic renal failure. Kidney Int 61: 2187–2192

    Article  PubMed  Google Scholar 

  16. Kalantar-Zadeh K et al. (2005) A matched comparison of serum lipids between hemodialysis patients and nondialysis morbid controls. Hemodial Int 9: 314–324

    Article  PubMed  Google Scholar 

  17. Iseki K et al. (2002) Hypocholesterolemia is a significant predictor of death in a cohort of chronic hemodialysis patients. Kidney Int 61: 1887–1893

    Article  PubMed  Google Scholar 

  18. Kilpatrick RD et al. (2007) Association between serum lipids and survival in hemodialysis patients and impact of race. J Am Soc Nephrol 18: 293–303

    Article  CAS  PubMed  Google Scholar 

  19. Habib AN et al. (2006) The association of lipid levels with mortality in patients on chronic peritoneal dialysis. Nephrol Dial Transplant 21: 2881–2892

    Article  PubMed  Google Scholar 

  20. Kovesdy CP et al. (2007) Inverse association between lipid levels and mortality in men with chronic kidney disease who are not yet on dialysis: effects of case mix and the malnutrition–inflammation–cachexia syndrome. J Am Soc Nephrol 18: 304–311

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y et al. (2004) Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 291: 451–459

    Article  CAS  PubMed  Google Scholar 

  22. Kalantar-Zadeh K (2005) Recent advances in understanding the malnutrition–inflammation–cachexia syndrome in chronic kidney disease patients: what is next? Semin Dial 18: 365–369

    Article  PubMed  Google Scholar 

  23. Douglas K et al. (2006) Meta-analysis: the effect of statins on albuminuria. Ann Intern Med 145: 117–124

    Article  CAS  PubMed  Google Scholar 

  24. Sandhu S et al. (2006) Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol 17: 2006–2016

    Article  CAS  PubMed  Google Scholar 

  25. Go AS et al. (2006) Statin therapy and risks for death and hospitalization in chronic heart failure. JAMA 296: 2105–2111

    Article  CAS  PubMed  Google Scholar 

  26. Wanner C et al. (2005) Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353: 238–248

    Article  CAS  PubMed  Google Scholar 

  27. Adams KF et al. (2006) Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med 355: 763–778

    Article  CAS  PubMed  Google Scholar 

  28. Kalantar-Zadeh K et al. (2005) Association of morbid obesity and weight change over time with cardiovascular survival in hemodialysis population. Am J Kidney Dis 46: 489–500

    Article  PubMed  Google Scholar 

  29. Kalantar-Zadeh K et al. (2005) Survival advantages of obesity in dialysis patients. Am J Clin Nutr 81: 543–554

    Article  CAS  PubMed  Google Scholar 

  30. Kalantar-Zadeh K and Kopple JD (2006) Obesity paradox in patients on maintenance dialysis. Contrib Nephrol 151: 57–69

    Article  PubMed  Google Scholar 

  31. Kovesdy CP et al. (2007) Paradoxical association between body mass index and mortality in men with CKD not yet on dialysis. Am J Kidney Dis 49: 581–591

    Article  PubMed  Google Scholar 

  32. Axelsson J et al. (2005) Adipose tissue and its relation to inflammation: the role of adipokines. J Ren Nutr 15: 131–136

    Article  PubMed  Google Scholar 

  33. Yamauchi T et al. (2003) The impact of visceral fat on multiple risk factors and carotid atherosclerosis in chronic haemodialysis patients. Nephrol Dial Transplant 18: 1842–1847

    Article  PubMed  Google Scholar 

  34. Goodman WG et al. (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342: 1478–1483

    Article  CAS  PubMed  Google Scholar 

  35. Stompor T et al. (2003) An association between coronary artery calcification score, lipid profile, and selected markers of chronic inflammation in ESRD patients treated with peritoneal dialysis. Am J Kidney Dis 41: 203–211

    Article  PubMed  Google Scholar 

  36. Kalantar-Zadeh K et al. (2006) Associations of body fat and its changes over time with quality of life and prospective mortality in hemodialysis patients. Am J Clin Nutr 83: 202–210

    Article  CAS  PubMed  Google Scholar 

  37. Kakiya R et al. (2006) Body fat mass and lean mass as predictors of survival in hemodialysis patients. Kidney Int 70: 549–556

    Article  CAS  PubMed  Google Scholar 

  38. Beddhu S et al. (2003) Effects of body size and body composition on survival in hemodialysis patients. J Am Soc Nephrol 14: 2366–2372

    Article  PubMed  Google Scholar 

  39. Hsu C-Y et al. (2006) Body mass index and risk for end-stage renal disease. Ann Intern Med 144: 21–28

    Article  PubMed  Google Scholar 

  40. Kalantar-Zadeh K and Kopple JD (2006) Body mass index and risk for end-stage renal disease. Ann Intern Med 144: 701

    Article  PubMed  Google Scholar 

  41. Foley RN et al. (1996) Impact of hypertension on cardiomyopathy, morbidity and mortality in end-stage renal disease. Kidney Int 49: 1379–1385

    Article  CAS  PubMed  Google Scholar 

  42. Klassen PS et al. (2002) Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. JAMA 287: 1548–1555

    Article  PubMed  Google Scholar 

  43. Kalantar-Zadeh K et al. (2005) Reverse epidemiology of hypertension and cardiovascular death in the hemodialysis population: the 58th annual fall conference and scientific sessions. Hypertension 45: 811–817

    Article  CAS  PubMed  Google Scholar 

  44. Li Z et al. (2006) The epidemiology of systolic blood pressure and death risk in hemodialysis patients. Am J Kidney Dis 48: 606–615

    Article  PubMed  Google Scholar 

  45. Kovesdy CP et al. (2006) Association of low blood pressure with increased mortality in patients with moderate to severe chronic kidney disease. Nephrol Dial Transplant 21: 1257–1262

    Article  PubMed  Google Scholar 

  46. Suliman ME et al. (2005) Homocysteine in uraemia—a puzzling and conflicting story. Nephrol Dial Transplant 20: 16–21

    Article  PubMed  Google Scholar 

  47. Kalantar-Zadeh K et al. (2006) Epidemiology of dialysis patients and heart failure patients. Semin Nephrol 26: 118–133

    Article  PubMed  Google Scholar 

  48. Suliman M et al. (2007) The reverse epidemiology of plasma total homocysteine as a mortality risk factor is related to the impact of wasting and inflammation. Nephrol Dial Transplant 22: 209–217

    Article  PubMed  Google Scholar 

  49. Wrone EM et al. (2004) Randomized trial of folic acid for prevention of cardiovascular events in end-stage renal disease. J Am Soc Nephrol 15: 420–426

    Article  CAS  PubMed  Google Scholar 

  50. Lowrie EG and Lew NL (1990) Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis 15: 458–482

    Article  CAS  PubMed  Google Scholar 

  51. Combe C et al. (2004) Kidney Disease Outcomes Quality Initiative (K/DOQI) and the Dialysis Outcomes and Practice Patterns Study (DOPPS): nutrition guidelines, indicators, and practices. Am J Kidney Dis 44: 39–46

    Article  PubMed  Google Scholar 

  52. Kalantar-Zadeh K et al. (2004) A low serum iron level is a predictor of poor outcome in hemodialysis patients. Am J Kidney Dis 43: 671–684

    Article  CAS  PubMed  Google Scholar 

  53. Schwedler SB et al. (2002) Advanced glycation end products and mortality in hemodialysis patients. Kidney Int 62: 301–310

    Article  CAS  PubMed  Google Scholar 

  54. Wu DY et al. (2006) Association between serum bicarbonate and death in hemodialysis patients: is it better to be acidotic or alkalotic? Clin J Am Soc Nephrol 1: 70–78

    Article  CAS  PubMed  Google Scholar 

  55. Kalantar-Zadeh K et al. (2006) Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 70: 771–780

    Article  CAS  PubMed  Google Scholar 

  56. Scholze A et al. (2007) Low serum leptin predicts mortality in patients with chronic kidney disease stage 5. Obesity 15: 1617–1622

    Article  CAS  PubMed  Google Scholar 

  57. Kalantar-Zadeh K (2007) So, is leptin good or bad in chronic kidney disease? Obesity 15: 1343–1344

    Article  PubMed  Google Scholar 

  58. Kalantar-Zadeh K et al. (2004) Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol 43: 1439–1444

    Article  PubMed  Google Scholar 

  59. Horwich TB et al. (2002) Low serum total cholesterol is associated with marked increase in mortality in advanced heart failure. J Card Fail 8: 216–224

    Article  CAS  PubMed  Google Scholar 

  60. Lissin LW et al. (2002) The prognostic value of body mass index and standard exercise testing in male veterans with congestive heart failure. J Card Fail 8: 206–215

    Article  PubMed  Google Scholar 

  61. Anker SD et al. (1997) Wasting as independent risk factor for mortality in chronic heart failure. Lancet 349: 1050–1053

    Article  CAS  PubMed  Google Scholar 

  62. Anker SD et al. (2003) Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361: 1077–1083

    Article  CAS  PubMed  Google Scholar 

  63. Muntwyler J et al. (2002) One-year mortality among unselected outpatients with heart failure. Eur Heart J 23: 1861–1866

    Article  CAS  PubMed  Google Scholar 

  64. Kalantar-Zadeh K et al. (2005) Obesity paradox as a component of reverse epidemiology in heart failure. Arch Intern Med 165: 1797

    Article  PubMed  Google Scholar 

  65. Rauchhaus M et al. (2000) The endotoxin–lipoprotein hypothesis. Lancet 356: 930–933

    Article  CAS  PubMed  Google Scholar 

  66. Sharma R et al. (2005) Whole blood endotoxin responsiveness in patients with chronic heart failure: the importance of serum lipoproteins. Eur J Heart Fail 7: 479–484

    Article  CAS  PubMed  Google Scholar 

  67. Kalmijn S et al. (1999) The association of body weight and anthropometry with mortality in elderly men: the Honolulu Heart Program. Int J Obes Relat Metab Disord 23: 395–402

    Article  CAS  PubMed  Google Scholar 

  68. Tikhonoff V et al. (2005) Low-density lipoprotein cholesterol and mortality in older people. J Am Geriatr Soc 53: 2159–2164

    Article  PubMed  Google Scholar 

  69. Fried LP et al. for the Cardiovascular Health Study Collaborative Research Group (1998) Risk factors for 5-year mortality in older adults: the cardiovascular health study. JAMA 279: 585–592

    Article  CAS  PubMed  Google Scholar 

  70. Aronow WS (2002) What is the appropriate treatment of hypertension in elders? J Gerontol A Biol Sci Med Sci 57: M483–M486

    Article  PubMed  Google Scholar 

  71. Chao FC et al. (1975) The possible prognostic usefulness of assessing serum proteins and cholesterol in malignancy. Cancer 35: 1223–1229

    Article  CAS  PubMed  Google Scholar 

  72. Halabi S et al. (2005) Elevated body mass index predicts for longer overall survival duration in men with metastatic hormone-refractory prostate cancer. J Clin Oncol 23: 2434–2435

    Article  PubMed  Google Scholar 

  73. Escalante A et al. (2005) Paradoxical effect of body mass index on survival in rheumatoid arthritis: role of comorbidity and systemic inflammation. Arch Intern Med 165: 1624–1629

    Article  PubMed  Google Scholar 

  74. Vestbo J et al. (2006) Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med 173: 79–83

    PubMed  Google Scholar 

  75. Roubenoff R (2000) Acquired immunodeficiency syndrome wasting, functional performance, and quality of life. Am J Manag Care 6: 1003–1016

    CAS  PubMed  Google Scholar 

  76. Chlebowski RT et al. (1995) Dietary intake and counseling, weight maintenance, and the course of HIV infection. J Am Diet Assoc 95: 428–432

    Article  CAS  PubMed  Google Scholar 

  77. Landi F et al. (2000) Body mass index and mortality among hospitalized patients. Arch Intern Med 160: 2641–2644

    Article  CAS  PubMed  Google Scholar 

  78. O'Brien JM Jr et al. (2006) Body mass index is independently associated with hospital mortality in mechanically ventilated adults with acute lung injury. Crit Care Med 34: 738–744

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gruberg L et al. (2002) The impact of obesity on the short-term and long-term outcomes after percutaneous coronary intervention: the obesity paradox? J Am Coll Cardiol 39: 578–584

    Article  PubMed  Google Scholar 

  80. Kalantar-Zadeh K et al. (2007) Risk factor paradox in wasting diseases. Curr Opin Clin Nutr Metab Care 10: 433–442

    Article  PubMed  Google Scholar 

  81. Kalantar-Zadeh K et al. (2005) Reverse epidemiology: a spurious hypothesis or a hardcore reality? Blood Purif 23: 57–63

    Article  PubMed  Google Scholar 

  82. [No authors listed] (1999) Mortality patterns—United States, 1997. MMWR Morb Mortal Wkly Rep 48: 664–668

  83. Asher CR et al. (1999) Insights into the pathophysiology of atherosclerosis and prognosis of black Americans with acute coronary syndromes. Am Heart J 138: 1073–1081

    Article  CAS  PubMed  Google Scholar 

  84. Davey Smith G et al. (1998) Mortality differences between black and white men in the USA: contribution of income and other risk factors among men screened for the MRFIT. MRFIT Research Group. Multiple Risk Factor Intervention Trial. Lancet 351: 934–939

    Article  CAS  PubMed  Google Scholar 

  85. Hogue CJ et al. (1987) Overview of the National Infant Mortality Surveillance (NIMS) project—design, methods, results. Public Health Rep 102: 126–138

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ranganathan D et al. (2000) Racial differences in respiratory-related neonatal mortality among very low birth weight infants. J Pediatr 136: 454–459

    Article  CAS  PubMed  Google Scholar 

  87. Platt RW et al. (2004) A proportional hazards model with time-dependent covariates and time-varying effects for analysis of fetal and infant death. Am J Epidemiol 160: 199–206

    Article  PubMed  Google Scholar 

  88. Klebanoff MA and Schoendorf KC (2004) What's so bad about curves crossing anyway? Am J Epidemiol 160: 211–212

    Article  PubMed  Google Scholar 

  89. Robinson BM et al. (2006) Revisiting survival differences by race and ethnicity among hemodialysis patients: the Dialysis Outcomes and Practice Patterns Study. J Am Soc Nephrol 17: 2910–2918

    Article  PubMed  Google Scholar 

  90. Markides KS and Eschbach K (2005) Aging, migration, and mortality: current status of research on the Hispanic paradox. J Gerontol B Psychol Sci Soc Sci 60 (Spec 2): 68–75

    Article  Google Scholar 

  91. Chung JH et al. (2003) Ethnic differences in birth weight by gestational age: at least a partial explanation for the Hispanic epidemiologic paradox? Am J Obstet Gynecol 189: 1058–1062

    Article  PubMed  Google Scholar 

  92. Patel KV et al. (2004) Evaluation of mortality data for older Mexican Americans: implications for the Hispanic paradox. Am J Epidemiol 159: 707–715

    Article  PubMed  Google Scholar 

  93. Abraido-Lanza AF et al. (1999) The Latino mortality paradox: a test of the “salmon bias” and healthy migrant hypotheses. Am J Public Health 89: 1543–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Razum O et al. (2000) The 'healthy migrant effect'—not merely a fallacy of inaccurate denominator figures. Int J Epidemiol 29: 191–192

    Article  CAS  PubMed  Google Scholar 

  95. Razum O et al. (1998) Low overall mortality of Turkish residents in Germany persists and extends into a second generation: merely a healthy migrant effect? Trop Med Int Health 3: 297–303

    Article  CAS  PubMed  Google Scholar 

  96. Benabe JE and Rios EV (2004) Kidney disease in the Hispanic population: facing the growing challenge. J Natl Med Assoc 96: 789–798

    PubMed  PubMed Central  Google Scholar 

  97. Pugh JA et al. (1988) Excess incidence of treatment of end-stage renal disease in Mexican Americans. Am J Epidemiol 127: 135–144

    Article  CAS  PubMed  Google Scholar 

  98. Tareen N et al. (2005) Chronic kidney disease in African American and Mexican American populations. Kidney Int Suppl: S137–S140

  99. Murrell KF (1995) Hispanic renal nutrition: nuances of the Mexican-American renal diet. Nephrol News Issues 9: 35–36

    CAS  PubMed  Google Scholar 

  100. Pugh JA (1996) Diabetic nephropathy and end-stage renal disease in Mexican Americans. Blood Purif 14: 286–292

    Article  CAS  PubMed  Google Scholar 

  101. Haffner SM et al. (1988) Diabetic retinopathy in Mexican Americans and non-Hispanic whites. Diabetes 37: 878–884

    Article  CAS  PubMed  Google Scholar 

  102. Romero LJ et al. (2001) Prevalence of self-reported illnesses in elderly Hispanic and non-Hispanic Whites in New Mexico. Ethn Dis 11: 263–272

    CAS  PubMed  Google Scholar 

  103. Marshall JA et al. (1993) Ethnic differences in risk factors associated with the prevalence of non-insulin-dependent diabetes mellitus. The San Luis Valley Diabetes Study. Am J Epidemiol 137: 706–718

    Article  CAS  PubMed  Google Scholar 

  104. Frankenfield DL et al. (2003) Survival advantage for adult Hispanic hemodialysis patients? Findings from the end-stage renal disease clinical performance measures project. J Am Soc Nephrol 14: 180–186

    Article  PubMed  Google Scholar 

  105. Lorenzo C et al. (2002) Prevalence of hypertension in Hispanic and non-Hispanic white populations. Hypertension 39: 203–208

    Article  CAS  PubMed  Google Scholar 

  106. Pappas G et al. (1990) Hypertension prevalence and the status of awareness, treatment, and control in the Hispanic Health and Nutrition Examination Survey (HHANES), 1982–84. Am J Public Health 80: 1431–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pugh JA et al. (1994) Survival among Mexican-Americans, non-Hispanic whites, and African-Americans with end-stage renal disease: the emergence of a minority pattern of increased incidence and prolonged survival. Am J Kidney Dis 23: 803–807

    Article  CAS  PubMed  Google Scholar 

  108. Ontiveros JA et al. (1999) Ethnic variation in attitudes toward hypertension in adults ages 75 and older. Prev Med 29: 443–449

    Article  CAS  PubMed  Google Scholar 

  109. [No authors listed] (1995) Hypertension among Mexican Americans—United States, 1982–1984 and 1988–1991. MMWR Morb Mortal Wkly Rep 44: 635–639

  110. Cangiano JL (1994) Hypertension in Hispanic Americans. Cleve Clin J Med 61: 345–350

    Article  CAS  PubMed  Google Scholar 

  111. Samet JM et al. (1988) Diabetes, gallbladder disease, obesity, and hypertension among Hispanics in New Mexico. Am J Epidemiol 128: 1302–1311

    Article  CAS  PubMed  Google Scholar 

  112. Raymond CA (1988) Diabetes in Mexican-Americans: pressing problem in a growing population. JAMA 259: 1772

    Article  CAS  PubMed  Google Scholar 

  113. Raymond NR and D'Eramo-Melkus G (1993) Non-insulin-dependent diabetes and obesity in the black and Hispanic population: culturally sensitive management. Diabetes Educ 19: 313–317

    Article  CAS  PubMed  Google Scholar 

  114. Perez-Luque E et al. (2000) Contribution of HLA class II genes to end stage renal disease in Mexican patients with type 2 diabetes mellitus. Hum Immunol 61: 1031–1038

    Article  CAS  PubMed  Google Scholar 

  115. Wong JS et al. (1999) Survival advantage in Asian American end-stage renal disease patients. Kidney Int 55: 2515–2523

    Article  CAS  PubMed  Google Scholar 

  116. Johansen KL et al. (2004) Association of body size with outcomes among patients beginning dialysis. Am J Clin Nutr 80: 324–332

    Article  CAS  PubMed  Google Scholar 

  117. Kaizu Y et al. (1998) Overweight as another nutritional risk factor for the long-term survival of non-diabetic hemodialysis patients. Clin Nephrol 50: 44–50

    CAS  PubMed  Google Scholar 

  118. Dialysis Clinic, Inc. [www.dciinc.org]

  119. Hall YN et al. (2005) Differential mortality and transplantation rates among Asians and Pacific Islanders with ESRD. J Am Soc Nephrol 16: 3711–3720

    Article  PubMed  Google Scholar 

  120. Schold JD et al. (2006) A 'weight-listing' paradox for candidates of renal transplantation? Am J Transplant 7: 550–559

    Article  PubMed  Google Scholar 

  121. Krane V and Wanner C (2006) At which stage of chronic kidney disease should dyslipidemia be treated? Nat Clin Practice Nephrol 2: 176–177

    Article  Google Scholar 

  122. Foley RN (2004) Cardiac disease in chronic uremia: can it explain the reverse epidemiology of hypertension and survival in dialysis patients? Semin Dial 17: 275–278

    Article  PubMed  Google Scholar 

  123. Lynn KL (2004) Hypertension and survival in hemodialysis patients. Semin Dial 17: 270–274

    Article  PubMed  Google Scholar 

  124. de Mutsert R et al. (2007) Association between body mass index and mortality is similar in the hemodialysis population and the general population at high age and equal duration of follow-up. J Am Soc Nephrol 18: 967–974

    Article  PubMed  Google Scholar 

  125. Kalantar-Zadeh K and Kopple J (2004) Malnutrition as a cause of morbidity and mortality in dialysis patients. In Nutritional Management of Renal Disease (Eds Kopple J and Massry S) Philadelphia: Lippincott, Williams & Wilkins

    Google Scholar 

  126. Kalantar-Zadeh K et al. (2003) Malnutrition–inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis 42: 864–881

    Article  PubMed  Google Scholar 

  127. Stenvinkel P et al. (2001) Malnutrition, inflammation, and atherosclerosis in peritoneal dialysis patients. Perit Dial Int 21 (Suppl) 3: S157–S162

    PubMed  Google Scholar 

  128. Anker SD et al. (2004) Cardiac cachexia. Ann Med 36: 518–529

    Article  PubMed  Google Scholar 

  129. Ifudu O et al. (2002) Low hematocrit may connote a malnutrition–inflammation syndrome in hemodialysis patients. Dial Transplant 31: 845–878

    Google Scholar 

  130. Kalantar-Zadeh K et al. (2005) Kidney insufficiency and nutrient-based modulation of inflammation. Curr Opin Clin Nutr Metab Care 8: 388–396

    Article  CAS  PubMed  Google Scholar 

  131. Beddhu S et al. (2005) The paradox of the “body mass index paradox” in dialysis patients: associations of adiposity with inflammation. Am J Clin Nutr 82: 909–910

    Article  CAS  PubMed  Google Scholar 

  132. Kalantar-Zadeh K et al. (2006) Should serum phosphorus be controlled by decreasing dietary protein in CKD? Presented at Renal Week: 2006 November 14–19, San Diego, CA

  133. Kalantar-Zadeh K et al. (2002) Food intake characteristics of hemodialysis patients as obtained by food frequency questionnaire. J Ren Nutr 12: 17–31

    Article  PubMed  Google Scholar 

  134. Fanti P et al. (2003) Serum isoflavones and soya food intake in Japanese, Thai and American end-stage renal disease patients on chronic haemodialysis. Nephrol Dial Transplant 18: 1862–1868

    Article  CAS  PubMed  Google Scholar 

  135. Fanti P et al. (1999) Serum levels and metabolic clearance of the isoflavones genistein and daidzein in hemodialysis patients. J Am Soc Nephrol 10: 864–871

    CAS  PubMed  Google Scholar 

  136. Szalai AJ et al. (2002) Association between baseline levels of C-reactive protein (CRP) and a dinucleotide repeat polymorphism in the intron of the CRP gene. Genes Immun 3: 14–19

    Article  CAS  PubMed  Google Scholar 

  137. Meier-Kriesche HU et al. (2002) The impact of body mass index on renal transplant outcomes: a significant independent risk factor for graft failure and patient death. Transplantation 73: 70–74

    Article  PubMed  Google Scholar 

  138. Feldman HI et al. (1996) Recipient body size and cadaveric renal allograft survival. J Am Soc Nephrol 7: 151–157

    CAS  PubMed  Google Scholar 

  139. Pelletier SJ et al. (2003) Survival benefit of kidney and liver transplantation for obese patients on the waiting list. Clin Transpl 77–88

  140. Smith D and Bradshaw B (2005) Rethinking the Hispanic paradox: death rates and life expectancy for US non-Hispanic white and Hispanic populations. Am J Public Health 96: 1686–1692

    Article  PubMed  Google Scholar 

  141. Goldfarb-Rumyantzev AS et al. (2005) The association between BP and mortality in patients on chronic peritoneal dialysis. Nephrol Dial Transplant 20: 1693–1701

    Article  PubMed  Google Scholar 

  142. Menon V et al. (2006) Adiponectin and mortality in patients with chronic kidney disease. J Am Soc Nephrol 17: 2599–2606

    Article  CAS  PubMed  Google Scholar 

  143. Eshaghian S et al. (2006) An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure. Am Heart J 151: 91

    Article  CAS  PubMed  Google Scholar 

  144. Gurm HS et al. (2002) Impact of body mass index on outcome after percutaneous coronary intervention (the obesity paradox). Am J Cardiol 90: 42–45

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

K Kalantar-Zadeh is supported by a grant from the National Institute of Diabetes Digestive and Kidney Diseases of the National Institutes of Health (R01DK078106), a grant-in-aid from the American Heart Association, research grants from DaVita, Inc. and a philanthropist grant from Mr Harold Simmons. TB Horwich was funded by NIH training grant 401357JI30608. GC Fonarow holds the Eliot Corday Chair in Cardiovascular Medicine and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamyar Kalantar-Zadeh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalantar-Zadeh, K., Kovesdy, C., Derose, S. et al. Racial and survival paradoxes in chronic kidney disease. Nat Rev Nephrol 3, 493–506 (2007). https://doi.org/10.1038/ncpneph0570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing