Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: the hypoxic tubular hypothesis of diabetic nephropathy

Abstract

Diabetic nephropathy is traditionally considered to be a primarily glomerular disease, although this contention has recently been challenged. Early tubular injury has been reported in patients with diabetes mellitus whose glomerular function is intact. Chronic hypoxia of the tubulointerstitium has been recognized as a mechanism of progression that is common to many renal diseases. The hypoxic milieu in early-stage diabetic nephropathy is aggravated by manifestations of chronic hyperglycemia—abnormalities of red blood cells, oxidative stress, sympathetic denervation of the kidney due to autonomic neuropathy, and diabetes-mellitus-induced tubular apoptosis; as such, tubulointerstitial hypoxia in diabetes mellitus might be an important early event. Chronic hypoxia could have a dominant pathogenic role in diabetic nephropathy, not only in promoting progression but also during initiation of the condition. Early loss of tubular and peritubular cells reduces production of 1,25-dihydroxyvitamin D3 and erythropoietin, which, together with dysfunction of their receptors caused by the diabetic state, diminishes the local trophic effects of the hormones. This diminution could further compromise the functional and structural integrity of the parenchyma and contribute to the gradual decline of renal function.

Key Points

  • Traditionally thought of as a primarily glomerular disease, evidence is accumulating to support early involvement of tubular and interstitial dysfunction in diabetic nephropathy

  • Several features of diabetes mellitus (e.g. enhanced production of reactive oxygen species, low concentrations of 1,25-dihydroxyvitamin D3, structural lesions, hypertension, interstitial fibrosis, abnormal red blood cells, and anemia) contribute to the generation of hypoxic conditions in renal tubules

  • Proteinuria might be a marker of tubulointerstitial injury in early diabetic renal disease

  • Altered sodium handling in the proximal tubules of people with diabetes mellitus probably contributes to glomerular hyperfiltration, which in turn might lead to functional tubular hypoxia

  • 1,25-Dihydroxyvitamin D3 and erythropoietin are promising treatments for early-stage diabetic nephropathy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic hyperglycemia and tubular hypoxia.
Figure 2: Effects of chronic hyperglycemia.

Similar content being viewed by others

Ketan K. Dhatariya, Nicole S. Glaser, … Guillermo E. Umpierrez

References

  1. Phillips A and Steadman R (2002) Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol 17: 247–252

    CAS  PubMed  Google Scholar 

  2. Mogensen CE (1987) Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int 31: 673–689

    Article  CAS  PubMed  Google Scholar 

  3. Mogensen C et al. (1993) The stages of diabetic renal disease with emphasis on the stage of incipient diabetic nephropathy. Diabetes 32 (Suppl 2): S64–S78

    Google Scholar 

  4. Hasslacher C et al. (1989) Similar risks of nephropathy in patients with type I or type II diabetes mellitus. Nephrol Dial Transplant 4: 859–863

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert RE and Cooper ME (1999) The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int 56: 1627–1637

    Article  CAS  PubMed  Google Scholar 

  6. Brocco E et al. (1997) Renal structure and function in non-insulin dependent diabetic patients with microalbuminuria. Kidney Int 63 (Suppl): S40–S44

    CAS  Google Scholar 

  7. Dalla Vestra M et al. (2000) Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab 26 (Suppl 4): S8–S14

    Google Scholar 

  8. Fioretto P et al. (1998) Heterogeneous nature of microalbuminuria in NIDDM: studies of endothelial function and renal structure. Diabetologia 41: 233–236

    Article  CAS  PubMed  Google Scholar 

  9. Mauer SM et al. (1984) Structural-functional relationships in diabetic nephropathy. J Clin Invest 74: 1143–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bohle A et al. (1990) The consequences of tubulo-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis. Pathol Res Pract 186: 135–144

    Article  CAS  PubMed  Google Scholar 

  11. Marcussen N (1992) Atubular glomeruli and the structural basis for chronic renal failure. Lab Invest 66: 265–284

    CAS  PubMed  Google Scholar 

  12. Taft JL et al. (1994) Clinical and histological correlations of decline in renal function in diabetic patients with proteinuria. Diabetes 43: 1046–1051

    Article  CAS  PubMed  Google Scholar 

  13. Basturk T et al. (2006) Urinary N-acetyl B glucosaminidase as an earlier marker of diabetic nephropathy and influence of low-dose perindopril/indapamide combination. Ren Fail 28: 125–128

    Article  CAS  PubMed  Google Scholar 

  14. Catalano C et al. (1993) Effect of posture and acute glycaemic control on the excretion of retinol-binding protein in normoalbuminuric insulin-dependent diabetic patients. Clin Sci (Lond) 84: 461–467

    Article  CAS  Google Scholar 

  15. Ikenaga H et al. (1993) Enzymuria in non-insulin-dependent diabetic patients: signs of tubular cell dysfunction. Clin Sci (Lond) 84: 469–475

    Article  CAS  Google Scholar 

  16. Thomas MC et al. (2006) Functional erythropoietin deficiency in patients with type 2 diabetes and anaemia. Diabet Med 23: 502–509

    Article  CAS  PubMed  Google Scholar 

  17. Ziyadeh FN (1996) Significance of tubulointerstitial changes in diabetic renal disease. Kidney Int Suppl 54: S10–S13

    CAS  PubMed  Google Scholar 

  18. Jones SC et al. (1999) High glucose increases growth and collagen synthesis in cultured human tubulointerstitial cells. Diabet Med 16: 932–938

    Article  CAS  PubMed  Google Scholar 

  19. Bleyer AJ et al. (1994) Polyol pathway mediates high glucose-induced collagen synthesis in proximal tubule. Kidney Int 45: 659–666

    Article  CAS  PubMed  Google Scholar 

  20. Dunlop M (2000) Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int Suppl 77: S3–S12

    Article  CAS  PubMed  Google Scholar 

  21. Harris RC et al. (1986) Sodium-hydrogen exchange and glucose transport in renal microvillus membrane vesicles from rats with diabetes mellitus. J Clin Invest 77: 724–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cooper ME et al. (1997) Diabetic vascular complications. Clin Exp Pharmacol Physiol 24: 770–775

    Article  CAS  PubMed  Google Scholar 

  23. Cooper ME (1998) Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 352: 213–219

    Article  CAS  PubMed  Google Scholar 

  24. Phillips AO et al. (1997) Polarity of stimulation and secretion of transforming growth factor-beta 1 by cultured proximal tubular cells. Am J Pathol 150: 1101–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Phillips AO et al. (1996) Induction of TGF-beta 1 synthesis in D-glucose primed human proximal tubular cells by IL-1 beta and TNF alpha. Kidney Int 50: 1546–1554

    Article  CAS  PubMed  Google Scholar 

  26. Choi YJ et al. (2000) Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney: altered expression of vascular endothelial growth factor. Hum Pathol 31: 1491–1497

    Article  CAS  PubMed  Google Scholar 

  27. Kang D-H et al. (2002) Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 13: 806–816

    Article  PubMed  Google Scholar 

  28. Epstein FH et al. (1994) Physiology of renal hypoxia. Ann NY Acad Sci 718: 72–81

    Article  CAS  PubMed  Google Scholar 

  29. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405–412

    Article  CAS  PubMed  Google Scholar 

  30. Salahudeen AK et al. (1997) Pathogenesis of diabetic nephropathy: a radical approach. Nephrol Dial Transplant 12: 664–668

    Article  CAS  PubMed  Google Scholar 

  31. Schnackenberg CG (2002) Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature. Am J Physiol Regul Integr Comp Physiol 282: R335–R342

    Article  CAS  PubMed  Google Scholar 

  32. Palm F et al. (2003) Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 46: 1153–1160

    Article  CAS  PubMed  Google Scholar 

  33. Palm F et al. (2004) Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-dependent disturbances in rats. Diabetologia 47: 1223–1231

    Article  CAS  PubMed  Google Scholar 

  34. Buerk DG (2001) Can we model nitric oxide biotransport? A survey of mathematical models for a simple diatomic molecule with surprisingly complex biological activities. Annu Rev Biomed Eng 3: 109–143

    Article  CAS  PubMed  Google Scholar 

  35. Palm F et al. (2005) Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygenation and microcirculation. Diabetes 54: 3282–3287

    Article  CAS  PubMed  Google Scholar 

  36. Koivisto A et al. (1999) Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide. Kidney Int 55: 2368–2375

    Article  CAS  PubMed  Google Scholar 

  37. Palm F (2006) Intrarenal oxygen in diabetes and a possible link to diabetic nephropathy. Clin Exp Pharmacol Physiol 33: 997–1001

    Article  CAS  PubMed  Google Scholar 

  38. Komers R and Anderson S (2003) Paradoxes of nitric oxide in the diabetic kidney. Am J Physiol Renal Physiol 284: F1121–F1137

    Article  CAS  PubMed  Google Scholar 

  39. Mekhail K et al. (2004) HIF activation by pH-dependent nucleolar sequestration of VHL. Nat Cell Biol 6: 642–647

    Article  CAS  PubMed  Google Scholar 

  40. Higgins DF et al. (2004) Hypoxic induction of Ctgf is directly mediated by Hif-1. Am J Physiol Renal Physiol 287: F1223–F1232

    Article  CAS  PubMed  Google Scholar 

  41. Iyer NV et al. (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12: 149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carmeliet P et al. (1998) Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485–490

    Article  CAS  PubMed  Google Scholar 

  43. Goda N et al. (2003) Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia. Mol Cell Biol 23: 359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maxwell P (2003) HIF-1: an oxygen response system with special relevance to the kidney. J Am Soc Nephrol 14: 2712–2722

    Article  PubMed  Google Scholar 

  45. Fine LG and Norman JT (2002) The breathing kidney. J Am Soc Nephrol 13: 1974–1976

    Article  PubMed  Google Scholar 

  46. Manotham K et al. (2004) Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol 15: 1277–1288

    Article  PubMed  Google Scholar 

  47. Norman JT et al. (2000) Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 58: 2351–2366

    Article  CAS  PubMed  Google Scholar 

  48. Zhong Z et al. (1998) Cyclosporin A increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine. Am J Physiol 275: F595–F604

    CAS  PubMed  Google Scholar 

  49. Suga SI et al. (2001) Hypokalemia induces renal injury and alterations in vasoactive mediators that favor salt sensitivity. Am J Physiol Renal Physiol 281: F620–F629

    Article  CAS  PubMed  Google Scholar 

  50. Vlassara H et al. (1987) Advanced glycation endproducts on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages: a model for turnover of aging cells. J Exp Med 166: 539–549

    Article  CAS  PubMed  Google Scholar 

  51. Gutmann FD and Schwartz JC (1990) Pathogenesis of anemia secondary to chronic renal failure. In Erythropoietin in Clinical Applications, 105–140 (Ed Garnick MB) New York: Marcel Dekker

    Google Scholar 

  52. Peterson CM et al. (1977) Reversible hematologic sequelae of diabetes mellitus. Ann Intern Med 86: 425–429

    Article  CAS  PubMed  Google Scholar 

  53. Jones RL and Peterson CM (1981) Hematologic alterations in diabetes mellitus. Am J Med 70: 339–352

    Article  CAS  PubMed  Google Scholar 

  54. Kowluru R et al. (1989) Reversible sodium pump defect and swelling in the diabetic rat erythrocyte: effect of filterability and implications for microangiopathy. Proc Natl Acad Sci USA 86: 3327–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beynon G (1977) The influence of the autonomic nervous system in the control of the erythropoietin secretion in the hypoxic rat. J Physiol 266: 347–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spannhake EWM and Fisher JW (1977) Partial inhibition of hypoxia-induced erythropoietin production by cholinergic blockade in the dog. Proc Soc Exp Biol Med 156: 19–23

    Article  CAS  PubMed  Google Scholar 

  57. Biaggioni I et al. (1994) The anemia of primary autonomic failure and its reversal with erythropoietin. Ann Intern Med 121: 181–186

    Article  CAS  PubMed  Google Scholar 

  58. Fink GD and Fisher JW (1977) Stimulation of erythropoiesis by β adrenergic agonists. II. Mechanisms of action. J Pharmacol Exp Ther 202: 199–208

    CAS  PubMed  Google Scholar 

  59. Zivny J et al. (1983) Effect of β adrenergic blocking agents on erythropoiesis in rats. J Pharmacol Exp Ther 226: 222–225

    CAS  PubMed  Google Scholar 

  60. Testa I et al. (1988) Abnormal membrane fluidity and acetyl cholinesterase activity in erythrocytes from insulin-dependent diabetic patients. J Clin Endocrinol Metab 67: 1129–1133

    Article  CAS  PubMed  Google Scholar 

  61. Bosman DR et al. (2001) Anaemia with erythropoietin deficiency occurs early in diabetic nephropathy. Diabetes Care 24: 495–499

    Article  CAS  PubMed  Google Scholar 

  62. Thomas MC et al. (2003) Unrecognized anemia in patients with diabetes: a cross-sectional survey. Diabetes Care 26: 1164–1169

    Article  PubMed  Google Scholar 

  63. Fioretto P et al. (1996) Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 39: 1569–1576

    Article  CAS  PubMed  Google Scholar 

  64. Winkler AS et al. (1999) Erythropoietin depletion and anaemia in diabetes mellitus. Diabet Med 16: 813–819

    Article  CAS  PubMed  Google Scholar 

  65. Bosman DR et al. (2002) Erythropoietin response to hypoxia in patients with diabetic autonomic neuropathy and non-diabetic chronic renal failure. Diabet Med 19: 65–69

    Article  CAS  PubMed  Google Scholar 

  66. Capla JM et al. (2007) Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Reconstr Surg 119: 59–70

    Article  CAS  PubMed  Google Scholar 

  67. Katavetin P et al. (2006) High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J Am Soc Nephrol 17: 1405–1413

    Article  CAS  PubMed  Google Scholar 

  68. Kunika K et al. (1997) Damage of charge-dependent renal tubular reabsorption causes diabetic microproteinuria. Diab Res Clin Pract 36: 1–9

    Article  CAS  Google Scholar 

  69. Yaqoob M et al. (1994) Tubulopathy with macroalbuminuria due to diabetic nephropathy and primary glomerulonephritis. Kidney Int Suppl 47: S101–S104

    CAS  PubMed  Google Scholar 

  70. Yaqoob M et al. (1993) Relationship between markers of endothelial dysfunction, oxidant injury and tubular damage in patients with insulin-dependent diabetes mellitus. Clin Sci (Lond) 85: 557–562

    Article  CAS  Google Scholar 

  71. Yaqoob M et al. (1994) Evidence of oxidant injury and tubular damage in early diabetic nephropathy. QJM 87: 601–607

    CAS  PubMed  Google Scholar 

  72. Thomson SC et al. (2004) Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol 286: F8–F15

    Article  CAS  Google Scholar 

  73. Evangelista C et al. (2006) Glomerulo-tubular balance in diabetes mellitus: molecular evidence and clinical consequences. G Ital Nefrol 23 (Suppl 34): S16–S20

    PubMed  Google Scholar 

  74. Vallon V et al. (2003) Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view. J Am Soc Nephrol 14: 530–537

    Article  PubMed  Google Scholar 

  75. Patel KP (1997) Volume reflex in diabetes. Cardiovasc Res 34: 81–90

    Article  CAS  PubMed  Google Scholar 

  76. Ditzel J et al. (1989) Renal sodium metabolism in relation to hypertension in diabetes. Diabete Metab 15: 292–295

    CAS  PubMed  Google Scholar 

  77. Quinones-Galvan A and Ferrannini E (1997) Renal effects of insulin in man. J Nephrol 10: 188–191

    CAS  PubMed  Google Scholar 

  78. Vervoort G et al. (2005) Glomerular hyperfiltration in type 1 diabetes mellitus results from primary changes in proximal tubular sodium handling without changes in volume expansion. Eur J Clin Invest 35: 330–336

    Article  CAS  PubMed  Google Scholar 

  79. Mahnensmith RL and Aronson PS (1985) Interrelationships among quinidine, amiloride, and lithium as inhibitors of the renal Na+-H+ exchanger. J Biol Chem 260: 12586–12592

    CAS  PubMed  Google Scholar 

  80. Krolewski AS et al. (1988) Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med 318: 140–145

    Article  CAS  PubMed  Google Scholar 

  81. Pedersen SB et al. (1993) Inhibition of renal ornithine decarboxylase activity prevents kidney hypertrophy in experimental diabetes. Am J Physiol Cell Physiol 264: C453–C456

    Article  CAS  Google Scholar 

  82. Tian J (2007) Potential role of active vitamin D in retarding the progression of chronic kidney disease. Nephrol Dial Transplant 22: 321–328

    Article  PubMed  Google Scholar 

  83. Levin A et al. (2007) Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 71: 31–38

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y (2006) Altered vitamin D metabolism in type II diabetic mouse glomeruli may provide protection from diabetic nephropathy. Kidney Int 70: 882–891

    Article  PubMed  CAS  Google Scholar 

  85. Feldman D et al. (2005) Vitamin D, edn 2. London: Elsevier Academic Press

    Google Scholar 

  86. Weinreich T et al. (1991) Actions of 1,25-dihydroxyvitamin D3 on human mesangial cells. Am J Kidney Dis 18: 359–366

    Article  CAS  PubMed  Google Scholar 

  87. Weinreich T et al. (1996) 1,25-Dihydroxyvitamin D3 and the synthetic vitamin D analogue, KH 1060, modulate the growth of mouse proximal tubular cells. Kidney Blood Press Res 19: 325–331

    Article  CAS  PubMed  Google Scholar 

  88. Panichi V et al. (2001) Effects of 1,25 (OH)2D3 in experimental mesangial proliferative nephritis in rats. Kidney Int 60: 87–95

    Article  CAS  PubMed  Google Scholar 

  89. Makibayashi K et al. (2001) A vitamin D analog ameliorates glomerular injury on rat glomerulonephritis. Am J Pathol 158: 1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li YC et al. (2002) 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110: 229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xiang W et al. (2005) Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin–angiotensin systems. Am J Physiol Endocrinol Metab 288: E125–E132

    Article  CAS  PubMed  Google Scholar 

  92. Gekle M (2005) Renal tubule albumin transport. Annu Rev Physiol 67: 573–594

    Article  CAS  PubMed  Google Scholar 

  93. Fine LG et al. (1998) Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int Suppl 65: S74–S78

    CAS  PubMed  Google Scholar 

  94. Fine LG et al. (2000) Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int Suppl 75: S22–S26

    Article  CAS  PubMed  Google Scholar 

  95. Kang DH et al. (2002) Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 13: 806–816

    Article  PubMed  Google Scholar 

  96. Eckardt KU et al. (2003) Role of hypoxia in the pathogenesis of renal disease. Blood Purif 21: 253–257

    Article  PubMed  Google Scholar 

  97. Nangaku M (2004) Hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. Nephron Exp Nephrol 98: e8–e12

    Article  PubMed  Google Scholar 

  98. Bunn HF and Poynton R (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76: 839–885

    Article  CAS  PubMed  Google Scholar 

  99. Shih S-C and Claffey KP (1998) Hypoxia regulation of gene expression in mammalian cells. Int J Exp Pathol 70: 347–357

    Google Scholar 

  100. Ratcliffe PJ et al. (1998) Oxygen sensing, hypoxia-inducible factor 1 and the regulation of gene expression. J Exp Biol 201: 1153–1162

    CAS  PubMed  Google Scholar 

  101. Bauer C and Kurtz A (1997) Introduction. Kidney Int 51: 371

    Article  Google Scholar 

  102. Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17: 17–25

    Article  CAS  PubMed  Google Scholar 

  103. Futrakul N et al. (2005) Tubular dysfunction and hemodynamic alteration in normoalbuminuric type 2 diabetes. Clin Hemorheol Microcirc 32: 59–65

    CAS  PubMed  Google Scholar 

  104. Allen DA et al. (2003) High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J 17: 908–910

    Article  CAS  PubMed  Google Scholar 

  105. Verzola D et al. (2004) Oxidative stress mediates apoptotic changes induced by hyperglycemia in human tubular kidney cells J Am Soc Nephrol 15: S85–S87

    Article  CAS  PubMed  Google Scholar 

  106. Jelkmann W (2002) The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur J Haematol 69: 265–274

    Article  CAS  PubMed  Google Scholar 

  107. Stohlman F Jr and Brecher G (1959) Humoral regulation of erythropoiesis. V. Relationship of plasma erythropoietin level to bone marrow activity. Proc Natl Acad Sci USA 100: 40–43

    CAS  Google Scholar 

  108. Gross AW and Lodish HF (2006) Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem 281: 2024–2032

    Article  CAS  PubMed  Google Scholar 

  109. Veng-Pedersen P et al. (1995) Kinetic evaluation of nonlinear drug elimination by a disposition decomposition analysis: application to the analysis of the nonlinear elimination kinetics of erythropoietin in adult humans. J Pharm Sci 84: 760–767

    Article  CAS  PubMed  Google Scholar 

  110. Veng-Pedersen P et al. (1999) A comparison of nonlinear pharmacokinetics of erythropoietin in sheep and humans. Biopharm Drug Dispos 20: 217–223

    Article  CAS  PubMed  Google Scholar 

  111. Yoon WH et al. (1997) Pharmacokinetics of recombinant human erythropoietin in rabbits and 3/4 nephrectomized rats. Res Commun Mol Pathol Pharmacol 96: 227–240

    CAS  PubMed  Google Scholar 

  112. Chapel SH et al. (2001) Receptor-based model accounts for phlebotomy-induced changes in erythropoietin pharmacokinetics. Exp Hematol 29: 425–431

    Article  CAS  PubMed  Google Scholar 

  113. Symeonidis A et al. (2006) Inappropriately low erythropoietin response for the degree of anemia in patients with noninsulin-dependent diabetes mellitus. Ann Hematol 85: 79–85

    Article  CAS  PubMed  Google Scholar 

  114. Thomas MC et al. (2006) Functional erythropoietin deficiency in patients with Type 2 diabetes and anaemia. Diabet Med 23: 502–509

    Article  CAS  PubMed  Google Scholar 

  115. Craig KJ et al. (2005) Anemia and diabetes in the absence of nephropathy. Diabetes Care 28: 1118–1123

    Article  PubMed  Google Scholar 

  116. Laffont I et al. (2002) Early-glycation of apolipoprotein E: effect on its binding to LDL receptor, scavenger receptor A and heparan sulfates. Biochim Biophys Acta 1583: 99–107

    Article  CAS  PubMed  Google Scholar 

  117. Dikow R et al. (2002) How should we manage anaemia in patients with diabetes? Nephrol Dial Transplant 17 (Suppl 1): S67–S72

    Article  Google Scholar 

  118. Kaysen GA (2001) The microinflammatory state in uremia: causes and potential consequences. J Am Soc Nephrol 12: 1549–1557

    CAS  PubMed  Google Scholar 

  119. Goicoechea M et al. (1998) Role of cytokines in the response to erythropoietin in hemodialysis patients. Kidney Int 54: 1337–1343

    Article  CAS  PubMed  Google Scholar 

  120. Zanjani ED et al. (1982) In vitro suppression of erythropoiesis by bone marrow adherent cells from some patients with fungal infection. Br J Haematol 50: 479–490

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Z et al. (2008) Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int 73: 163–171

    Article  CAS  PubMed  Google Scholar 

  122. Nishizawa Y and Shoji T (2006) Does paricalcitol reduce proteinuria in patients with chronic kidney disease? Nat Clin Pract Nephrol 2: 352–353

    Article  PubMed  Google Scholar 

  123. Krantz SB (1991) Erythropoietin. Blood 77: 419–434

    CAS  PubMed  Google Scholar 

  124. Anagnostou A et al. (1994) Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci USA 91: 3974–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vogel V et al. (1997) Effects of erythropoietin on endothelin-1 synthesis and the cellular calcium messenger system in vascular endothelial cells. Am J Hypertens 10: 289–296

    Article  CAS  PubMed  Google Scholar 

  126. Anagnostou A et al. (1990) Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA 87: 5978–5982

    Article  CAS  Google Scholar 

  127. Carlini RG et al. (1993) Recombinant human erythropoietin (rHuEPO) increases endothelin-1 release by endothelial cells. Kidney Int 43: 1010–1014

    Article  CAS  PubMed  Google Scholar 

  128. Carlini RG et al. (1995) Recombinant human erythropoietin stimulates angiogenesis in vitro. Kidney Int 47: 740–745

    Article  CAS  PubMed  Google Scholar 

  129. Gouva C et al. (2004) Treating anemia early in renal failure patients slows the decline of renal function: a randomized controlled trial. Kidney Int 66: 753–760

    Article  PubMed  Google Scholar 

  130. Garcia DL et al. (1988) Anemia lessens and its prevention with recombinant human erythropoietin worsens glomerular injury and hypertension in rats with reduced renal mass. Proc Natl Acad Sci USA 85: 6142–6146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Besarab A et al. (1998) The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med 339: 584–590

    Article  CAS  PubMed  Google Scholar 

  132. Singh AK et al. for the CHOIR Investigators (2006) Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med 355: 2085–2098

    Article  CAS  PubMed  Google Scholar 

  133. Begg C et al. (1996) Improving the quality of reporting of randomized trials: the CONSORT statement. JAMA 276: 637–639

    Article  CAS  PubMed  Google Scholar 

  134. Drueke TB et al. for the CREATE Investigators (2006) Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med 355: 2071–2084

    Article  CAS  PubMed  Google Scholar 

  135. Lappin TR et al. (2002) EPO's alter ego: erythropoietin has multiple actions. Stem Cells 20: 485–492

    Article  CAS  PubMed  Google Scholar 

  136. Sasaki R et al. (2001) Pleiotropic functions and tissue-specific expression of erythropoietin. News Physiol Sci 16: 110–113

    CAS  PubMed  Google Scholar 

  137. Goldman SA and Nedergaard M (2002) Erythropoietin strikes a new cord. Nat Med 8: 785–787

    Article  CAS  PubMed  Google Scholar 

  138. Lee SH et al. (2005) Attenuation of interstitial inflammation and fibrosis by recombinant human erythropoietin in chronic cyclosporine nephropathy. Am J Nephrol 25: 64–76

    Article  CAS  PubMed  Google Scholar 

  139. Chong ZZ et al. (2002) Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 106: 2973–2979

    Article  CAS  PubMed  Google Scholar 

  140. Cerami A et al. (2002) Neuroprotective properties of epoetin alfa. Nephrol Dial Transplant 17 (Suppl 1): S8–S12

    Article  Google Scholar 

  141. Heeschen C et al. (2003) Erythropoietin is a potent physiological stimulus for endothelial progenitor cell mobilization. Blood 102: 1340–1346

    Article  CAS  PubMed  Google Scholar 

  142. Parsa CJ et al. (2003) A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 112: 999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Calvillo L et al. (2003) Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 100: 4802–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Spandou E et al. (2006) Erythropoietin attenuates renal injury in experimental acute renal failure ischaemic/reperfusion model. Nephrol Dial Transplant 21: 330–336

    Article  CAS  PubMed  Google Scholar 

  145. Fliser D et al. (2006) EPO: renoprotection beyond anemia correction. Pediatr Nephrol 21: 1785–1789

    Article  PubMed  Google Scholar 

  146. Sharples EJ and Yaqoob MM (2006) Erythropoietin and acute renal failure. Semin Nephrol 26: 325–331

    Article  CAS  PubMed  Google Scholar 

  147. Mitra A et al. (2007) Erythropoietin ameliorates renal dysfunction during endotoxaemia. Nephrol Dial Transplant 22: 2349–2353

    Article  CAS  PubMed  Google Scholar 

  148. Sharples EJ et al. (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 15: 2240–2241

    Article  CAS  Google Scholar 

  149. Youssoufian H et al. (1993) Structure, function, and activation of the erythropoietin receptor. Blood 81: 2223–2236

    CAS  PubMed  Google Scholar 

  150. Westenfelder C et al. (1999) Human, rat, and mouse kidney cells express functional erythropoietin receptors. Kidney Int 55: 808–820

    Article  CAS  PubMed  Google Scholar 

  151. Lacombe C et al. (1988) Peritubular cells are the site of erythropoietin synthesis in the murine hypoxia kidney. J Clin Invest 81: 620–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Koury S et al. (1988) Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71: 524–527

    CAS  PubMed  Google Scholar 

  153. Bachmann S et al. (1993) Colocalization of erythropoietin messenger RNA and ecto-5'-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem 41: 335–341

    Article  CAS  PubMed  Google Scholar 

  154. Maxwell P et al. (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44: 1149–1162

    Article  CAS  PubMed  Google Scholar 

  155. Eckardt KU et al. (1993) Distribution of erythropoietin producing cells in rat kidneys during hypoxic hypoxia. Kidney Int 43: 815–823

    Article  CAS  PubMed  Google Scholar 

  156. Brines M and Cerami A (2006) Discovering erythropoietin's extra-hematopoietic functions: biology and clinical promise. Kidney Int 70: 246–250

    Article  CAS  PubMed  Google Scholar 

  157. Sharples EJ and Yaqoob MM (2006) Erythropoietin in experimental acute renal failure. Nephron Exp Nephrol 104: e83–e88

    Article  CAS  PubMed  Google Scholar 

  158. Johnson DW et al. (2006) Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure. Kidney Int 69: 1806–1813

    Article  CAS  PubMed  Google Scholar 

  159. Johnson DW et al. (2006) Novel renoprotective actions of erythropoietin: new uses for an old hormone. Nephrology (Carlton) 11: 306–312

    Article  CAS  Google Scholar 

  160. Vesey DA et al. (2004) Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant 19: 348–355

    Article  CAS  PubMed  Google Scholar 

  161. Bahlmann FH et al. (2004) Low-dose therapy with the long-acting erythropoietin analogue darbepoetin alpha persistently activates endothelial Akt and attenuates progressive organ failure. Circulation 110: 1006–1012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C Milton and M Alexander, library staff at Lister Hospital, for helping us to obtain some of the older references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruv K Singh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D., Winocour, P. & Farrington, K. Mechanisms of Disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat Rev Nephrol 4, 216–226 (2008). https://doi.org/10.1038/ncpneph0757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0757

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing