Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endogenous digitalis: pathophysiologic roles and therapeutic applications

Abstract

Endogenous digitalis-like factors, also called cardiotonic steroids, have been thought for nearly half a century to have important roles in health and disease. The endogenous cardiotonic steroids ouabain and marinobufagenin have been identified in humans, and an effector mechanism has been delineated by which these hormones signal through the sodium/potassium-transporting ATPase. These findings have increased interest in this field substantially. Although cardiotonic steroids were first considered important in the regulation of renal sodium transport and arterial pressure, subsequent work has implicated these hormones in the control of cell growth, apoptosis and fibrosis, among other processes. This Review focuses on the role of endogenous cardiotonic steroids in the pathophysiology of essential hypertension, congestive heart failure, end-stage renal disease and pre-eclampsia. We also discuss potential therapeutic strategies that have emerged as a result of the increased understanding of the regulation and actions of cardiotonic steroids.

Key Points

  • Several endogenous cardiotonic steroids, or digitalis-like factors, have been isolated and characterized in humans; of these, ouabain, from the cardenolide class, and marinobufagenin, from the bufadienolide class, are the most extensively studied

  • In addition to inhibiting the ion transport function of the sodium/potassium-transporting ATPase, binding of endogenous cardiotonic steroids to this sodium pump can activate signaling via the Src–epidermal growth factor receptor pathway

  • In Dahl salt-sensitive rats with salt-induced hypertension, endogenous ouabain acts as a neurohormone and stimulates the release of marinobufagenin, a natriuretic and vasoconstrictor

  • Endogenous cardiotonic steroids are implicated in congestive heart failure, pre-eclampsia and diabetes mellitus

  • Potential therapeutic approaches to targeting endogenous cardiotonic steroids include immunoneutralization, receptor antagonism and protein kinase C inhibition

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of selected cardiotonic steroids.
Figure 2: The two pathways via which binding of cardiotonic steroids to the Na+/K+-ATPase exerts genomic and non-genomic effects.
Figure 3: Interactions between brain endogenous ouabain, the central renin–angiotensin system, and circulating marinobufagenin in the pathogenesis of salt-sensitive hypertension.

Similar content being viewed by others

References

  1. Ritz E (1996) The history of salt—aspects of interest to the nephrologist. Nephrol Dial Transplant 11: 969–975

    CAS  PubMed  Google Scholar 

  2. Meneton P et al. (2005) Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 85: 679–715

    Article  CAS  PubMed  Google Scholar 

  3. Taubes G (1998) The (political) science of salt. Science 281: 898–901

    Article  CAS  PubMed  Google Scholar 

  4. De Wardener HE and MacGregor GA (2002) Sodium and blood pressure. Curr Opin Cardiol 17: 360–367

    Article  PubMed  Google Scholar 

  5. Weinberger MH (2006) Pathogenesis of salt sensitivity of blood pressure. Curr Hypertens Rep 8: 166–170

    Article  CAS  PubMed  Google Scholar 

  6. Ritz E et al. (2006) Salt—a potential 'uremic toxin'? Blood Purif 24: 63–66

    Article  CAS  PubMed  Google Scholar 

  7. Stamler J et al. (1991) Findings of the international cooperative INTERSALT study. Hypertension 17 (Suppl 1): 19–15

    Google Scholar 

  8. Appel LJ et al. for the DASH Collaborative Research Group (1997) A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 336: 1117–1124

    Article  CAS  PubMed  Google Scholar 

  9. de Wardener HE and Clarkson EM (1985) Concept of natriuretic hormone. Physiol Rev 65: 658–759

    Article  CAS  PubMed  Google Scholar 

  10. Kelly RA and Smith TW (1992) Is ouabain the endogenous digitalis? Circulation 86: 694–697

    Article  CAS  PubMed  Google Scholar 

  11. Hansen O (2003) No evidence for a role in signal-transduction of Na+/K+-ATPase interaction with putative endogenous ouabain. Eur J Biochem 270: 1916–1919

    Article  CAS  PubMed  Google Scholar 

  12. Hamlyn JM et al. (1991) Identification and characterization of an ouabain-like compound from human plasma. Proc Natl Acad Sci USA 88: 6259–6263

    Article  CAS  PubMed  Google Scholar 

  13. Lichtstein D et al. (1993) Identification of digitalis-like compounds in human cataractous lenses. Eur J Biochem 216: 261–268

    Article  CAS  PubMed  Google Scholar 

  14. Bagrov AY et al. (1998) Characterization of a urinary bufodienolide Na+,K+-ATPase inhibitor in patients after acute myocardial infarction. Hypertension 31: 1097–1103

    Article  CAS  PubMed  Google Scholar 

  15. Komiyama Y et al. (2005) A novel endogenous digitalis, telocinobufagin, exhibits elevated plasma levels in patients with terminal renal failure. Clin Biochem 38: 36–45

    Article  CAS  PubMed  Google Scholar 

  16. Schoner W and Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 293: C509–C536

    Article  CAS  PubMed  Google Scholar 

  17. Haddy FJ (2006) Role of dietary salt in hypertension. Life Sci 79: 1585–1592

    Article  CAS  PubMed  Google Scholar 

  18. Orlov SN and Hamet P (2006) The death of cardiotonic steroid-treated cells: evidence of Na+i,K+i-independent H+i-sensitive signalling. Acta Physiol (Oxf) 187: 231–240

    Article  CAS  Google Scholar 

  19. Pierre SV and Xie Z (2006) The Na,K-ATPase receptor complex: its organization and membership. Cell Biochem Biophys 46: 303–316

    Article  CAS  PubMed  Google Scholar 

  20. Nesher M et al. (2007) The digitalis-like steroid hormones: new mechanisms of action and biological significance. Life Sci 80: 2093–2107

    Article  CAS  PubMed  Google Scholar 

  21. Wasserstrom JA and Aistrup GL (2005) Digitalis: new actions for an old drug. Am J Physiol Heart Circ Physiol 289: H1781–H1793

    Article  CAS  PubMed  Google Scholar 

  22. Huang BS et al. (2006) The central role of the brain in salt-sensitive hypertension. Curr Opin Cardiol 21: 295–304

    Article  PubMed  Google Scholar 

  23. Blaustein MP et al. (2006) How does salt retention raise blood pressure? Am J Physiol Regul Integr Comp Physiol 290: R514–R523

    Article  CAS  PubMed  Google Scholar 

  24. Schrier RW and Berl T (1975) Nonosmolar factors affecting renal water excretion (first of two parts). N Engl J Med 292: 81–88

    Article  CAS  PubMed  Google Scholar 

  25. Schrier RW (1990) Body fluid volume regulation in health and disease: a unifying hypothesis. Ann Intern Med 113: 155–159

    Article  CAS  PubMed  Google Scholar 

  26. de Wardener H et al. (1961) Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci 21: 249–258

    CAS  PubMed  Google Scholar 

  27. Cort JH and Lichardus B (1963) The natriuretic activity of jugular vein blood during carotid occlusion. Physiol Bohemoslov 12: 497–501

    CAS  PubMed  Google Scholar 

  28. Buckalew VM Jr et al. (1970) The effect of dialysates and ultrafiltrates of plasma of saline-loaded dogs on toad bladder sodium transport. J Clin Invest 49: 926–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schrier RW et al. (1968) Absence of natriuretic response to acute hypotonic intravascular volume expansion in dogs. Clin Sci 34: 57–72

    CAS  PubMed  Google Scholar 

  30. Schrier RW et al. (1968) Effect of isotonic saline infusion and acute haemorrhage on plasma oxytocin and vasopressin concentrations in dogs. Clin Sci 35: 433–443

    CAS  PubMed  Google Scholar 

  31. de Wardener HE et al. (1971) Evidence for a hormone other than aldosterone which controls urinary sodium excretion. Adv Nephrol Necker Hosp 1: 97–111

    CAS  PubMed  Google Scholar 

  32. Kramer HJ and Gonick HC (1974) Effect of extracellular volume expansion on renal Na-K-ATPase and cell metabolism. Nephron 12: 281–296

    Article  CAS  PubMed  Google Scholar 

  33. Kaplan MA et al. (1974) The effects of the natriuretic factor from uremic urine on sodium transport, water and electrolyte content, and pyruvate oxidation by the isolated toad bladder. J Clin Invest 53: 1568–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bricker NS et al. (1975) On the biology of sodium excretion: the search for a natriuretic hormone. Yale J Biol Med 48: 293–303

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gruber KA et al. (1980) Endogenous digitalis-like substance in plasma of volume-expanded dogs. Nature 287: 743–745

    Article  CAS  PubMed  Google Scholar 

  36. Hamlyn JM et al. (1982) A circulating inhibitor of (Na+ + K+)ATPase associated with essential hypertension. Nature 300: 650–652

    Article  CAS  PubMed  Google Scholar 

  37. Kojima I et al. (1982) Involvement of endogenous digitalis-like substance in genesis of deoxycorticosterone-salt hypertension. Life Sci 30: 1775–1781

    Article  CAS  PubMed  Google Scholar 

  38. Goto A et al. (1992) Physiology and pharmacology of endogenous digitalis-like factors. Pharmacol Rev 44: 377–399

    CAS  PubMed  Google Scholar 

  39. Bergdahl B and Molin L (1981) Precision of digoxin radioimmunoassays and matrix effects: four kits compared. Clin Biochem 14: 67–71

    Article  CAS  PubMed  Google Scholar 

  40. Pleasants RA et al. (1986) Interference of digoxin-like immunoreactive substances with three digoxin immunoassays in patients with various degrees of renal function. Clin Pharm 5: 810–816

    CAS  PubMed  Google Scholar 

  41. Hauptman PJ and Kelly RA (1999) Digitalis. Circulation 99: 1265–1270

    Article  CAS  PubMed  Google Scholar 

  42. Schneider R et al. (1998) Bovine adrenals contain, in addition to ouabain, a second inhibitor of the sodium pump. J Biol Chem 273: 784–792

    Article  CAS  PubMed  Google Scholar 

  43. Kawamura A et al. (1999) On the structure of endogenous ouabain. Proc Natl Acad Sci USA 96: 6654–6659

    Article  CAS  PubMed  Google Scholar 

  44. Xie Z and Askari A (2002) Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem 269: 2434–2439

    Article  CAS  PubMed  Google Scholar 

  45. Liu L et al. (2003) Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am J Physiol Cell Physiol 284: C1550–C1560

    Article  CAS  PubMed  Google Scholar 

  46. Wang H et al. (2004) Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase. J Biol Chem 279: 17250–17259

    Article  CAS  PubMed  Google Scholar 

  47. Liang M et al. (2007) Identification of a pool of non-pumping Na/K-ATPase. J Biol Chem 282: 10585–10593

    Article  CAS  PubMed  Google Scholar 

  48. Manunta P et al. (2001) Plasma ouabain-like factor during acute and chronic changes in sodium balance in essential hypertension. Hypertension 38: 198–203

    Article  CAS  PubMed  Google Scholar 

  49. Balzan S et al. (2005) Endogenous ouabain and acute salt loading in low-renin hypertension. Am J Hypertens 18: 906–909

    Article  CAS  PubMed  Google Scholar 

  50. Manunta P et al. (2006) Salt intake and depletion increase circulating levels of endogenous ouabain in normal men. Am J Physiol Regul Integr Comp Physiol 290: R553–R559

    Article  CAS  PubMed  Google Scholar 

  51. Bagrov AY et al. (1995) Endogenous marinobufagenin-like immunoreactive factor and Na,K-ATPase inhibition during voluntary hypoventilation. Hypertension 26: 781–788

    Article  CAS  PubMed  Google Scholar 

  52. Lopatin DA et al. (1999) Circulating bufodienolide and cardenolide sodium pump inhibitors in preeclampsia. J Hypertens 17: 1179–1187

    Article  CAS  PubMed  Google Scholar 

  53. Gonick HC et al. (1998) Simultaneous measurement of marinobufagenin, ouabain and hypertension-associated protein in various disease states. Clin Exp Hypertens 20: 617–627

    Article  CAS  PubMed  Google Scholar 

  54. Fridman AI et al. (2002) Marinobufagenin, an endogenous ligand of alpha-1 Na/K-ATPase, is a marker of congestive heart failure severity. J Hypertens 20: 1189–1194

    Article  CAS  PubMed  Google Scholar 

  55. Komiyama Y et al. (2001) Identification of endogenous ouabain in culture supernatant of PC12 cells. J Hypertens 19: 229–236

    Article  CAS  PubMed  Google Scholar 

  56. Murrell JR et al. (2005) Endogenous ouabain: upregulation of steroidogenic genes in hypertensive hypothalamus but not adrenal. Circulation 112: 1301–1308

    Article  CAS  PubMed  Google Scholar 

  57. el-Masri MA et al. (2002) Human adrenal cells in culture produce both ouabain-like and dihydroouabain-like factors. Clin Chem 48: 1720–1730

    CAS  PubMed  Google Scholar 

  58. Laredo J et al. (1997) Angiotensin II stimulates secretion of endogenous ouabain from bovine adrenocortical cells via angiotensin type 2 receptors. Hypertension 29: 401–407

    Article  CAS  PubMed  Google Scholar 

  59. Shah JR et al. (1999) Effects of angiotensin II on sodium potassium pumps, endogenous ouabain, and aldosterone in bovine zona glomerulosa cells. Hypertension 33: 373–377

    Article  CAS  PubMed  Google Scholar 

  60. Goto A et al. (1990) Isolation of a urinary digitalis-like factor indistinguishable from digoxin. Biochem Biophys Res Commun 173: 1093–1101

    Article  CAS  PubMed  Google Scholar 

  61. Qazzaz HM et al. (1996) Deglycosylated products of endogenous digoxin-like immunoreactive factor in mammalian tissue. J Biol Chem 271: 8731–8737

    Article  CAS  PubMed  Google Scholar 

  62. Huang BS et al. (1999) Digoxin prevents ouabain and high salt intake-induced hypertension in rats with sinoaortic denervation. Hypertension 34: 733–738

    Article  CAS  PubMed  Google Scholar 

  63. Goto A et al. (1991) Digoxin-like immunoreactivity: is it still worth measuring? Life Sci 49: 1667–1678

    Article  CAS  PubMed  Google Scholar 

  64. Meyer K and Linde H (1971) Collection of toad venoms and chemistry of the toad venom steroids. In Venomous animals and their venoms, 521–556 (Eds Bucherl W and Buckley E) London: Academic Press

    Chapter  Google Scholar 

  65. Chen KK and Kowarikowa A (1967) Pharmacology and toxicology of toad venom. J Pharmacol Sci 56: 1535–1542

    Article  CAS  Google Scholar 

  66. Flier J et al. (1980) Widespread occurrence in frogs and toads of skin compounds interacting with the ouabain site of Na+,K+-ATPase. Science 208: 503–505

    Article  CAS  PubMed  Google Scholar 

  67. Lichtstein D et al. (1981) Effect of salt acclimation on digitalis-like compounds in the toad. Biochim Biophys Acta 1073: 65–68

    Article  Google Scholar 

  68. Kieval RS et al. (1988) Cellular electrophysiologic effects of vertebrate digitalis-like substances. J Am Col Cardiol 11: 637–643

    Article  CAS  Google Scholar 

  69. Goto A et al. (1991) Immunoreactivity of endogenous digitalis-like factors. Biochem Pharmacol 41: 1261–1263

    Article  CAS  PubMed  Google Scholar 

  70. Numazawa S et al. (1995) A cardiotonic steroid bufalin-like factor in human plasma induces leukemia cell differentiation. Leuk Res 19: 945–953

    Article  CAS  PubMed  Google Scholar 

  71. Oda M et al. (2001) Determination of bufalin-like immunoreactivity in serum of humans and rats by time-resolved fluoroimmunoassay for using a monoclonal antibody. Life Sci 68: 1107–1117

    Article  CAS  PubMed  Google Scholar 

  72. Sich B et al. (1996) Pulse pressure correlates in humans with a proscillaridin A immunoreactive compound. Hypertension 27: 1073–1078

    Article  CAS  PubMed  Google Scholar 

  73. Hilton PJ et al. (1996) An inhibitor of the sodium pump obtained from human placenta. Lancet 348: 303–305

    Article  CAS  PubMed  Google Scholar 

  74. Bagrov AY et al. (1993) Digitalis-Like and vasoconstrictor properties of endogenous digoxin-like factor from Bufo marinus toad. Eur J Pharmacol 234: 165–172

    Article  CAS  PubMed  Google Scholar 

  75. Bagrov AY et al. (1995) Effects of two endogenous digitalis-like factors, ouabain and marinobufagenin in isolated rat aorta. Eur J Pharmacol 274: 151–158

    Article  CAS  PubMed  Google Scholar 

  76. Bagrov AY et al. (1996) Endogenous marinobufagenin-like immunoreactive substance: a possible endogenous Na,K-ATPase inhibitor with vasoconstrictor activity. Am J Hypertens 9: 982–990

    Article  CAS  PubMed  Google Scholar 

  77. Ho CS et al. (1997) Effect of carbidopa on the excretion of sodium, dopamine, and ouabain-like substance in the rat. Hypertension 30: 1544–1548

    Article  CAS  PubMed  Google Scholar 

  78. Butt AN et al. (1997) Effect of high salt intake on plasma and tissue concentration of endogenous ouabain-like substance in the rat. Life Sci 61: 2367–7233

    Article  CAS  PubMed  Google Scholar 

  79. Ludens JH et al. (1993) Digitalis-like factor and ouabain-like compound in plasma of volume-expanded dogs. J Cardiovasc Pharmacol 22 (Suppl 2): S38–S41

    Article  CAS  PubMed  Google Scholar 

  80. Bagrov AY et al. (1996) Plasma marinobufagenin-like and ouabain-like immunorecativity during acute saline volume expansion in anesthetized dogs. Cardiovasc Res 206: 296–305

    Article  Google Scholar 

  81. Fedorova OV et al. (2001) Interaction of high sodium chloride intake and psychosocial stress on endogenous ligands of the sodium pump and blood pressure in normotensive rats. Am J Physiol 281: R352–R358

    CAS  Google Scholar 

  82. Fedorova OV et al. (2000) Differential effects of acute NaCl loading on endogenous ouabain-like and marinobufagenin-like ligands of the sodium pump in Dahl hypertensive rats. Circulation 102: 3009–3014

    Article  CAS  PubMed  Google Scholar 

  83. Fedorova OV et al. (2002) An endogenous ligand of α-1 sodium pump, marinobufagenin, is a novel mediator of sodium chloride dependent hypertension. Circulation 105: 1122–1127

    Article  CAS  PubMed  Google Scholar 

  84. Anderson DE et al. (2008) Endogenous sodium pump inhibitors and age-associated increases in salt sensitivity of blood pressure in normotensives. Am J Physiol Regul Integr Comp Physiol 294: R1248–R1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ferrari P et al. (2006) Rostafuroxin: an ouabain antagonist that corrects renal and vascular Na+-K+-ATPase alterations in ouabain and adducin-dependent hypertension. Am J Physiol Regul Integr Comp Physiol 290: R529–R535

    Article  CAS  PubMed  Google Scholar 

  86. Rossoni LV et al. (2002) Ouabain-induced hypertension is accompanied by increases in endothelial vasodilator factors. Am J Physiol Heart Circ Physiol 283: H2110–H2118

    Article  CAS  PubMed  Google Scholar 

  87. Ferrandi M et al. (2004) Organ hypertrophic signaling within caveolae membrane subdomains triggered by ouabain and antagonized by PST 2238. J Biol Chem 279: 33306–33314

    Article  CAS  PubMed  Google Scholar 

  88. Dostanic-Larson I et al. (2005) The highly conserved cardiac glycoside binding site of Na,K-ATPase plays a role in blood pressure regulation. Proc Natl Acad Sci USA 102: 15845–15850

    Article  CAS  PubMed  Google Scholar 

  89. Briones et al. (2006) Alterations in structure and mechanics of resistance arteries from ouabain-induced hypertensive rats. Am J Physiol Heart Circ Physiol 291: H193–H201

    Article  CAS  PubMed  Google Scholar 

  90. Cheung WJ et al. (2006) Central and peripheral renin-angiotensin systems in ouabain-induced hypertension. Am J Physiol Heart Circ Physiol 291: H624–H630

    Article  CAS  PubMed  Google Scholar 

  91. Rossoni LV et al. (2006) Ouabain-induced hypertension enhances left ventricular contractility in rats. Life Sci 79: 1537–1545

    Article  CAS  PubMed  Google Scholar 

  92. Bianchi G et al. (1994) Two point mutations within the adducin genes are involved in blood pressure variation. Proc Natl Acad Sci USA 91: 3999–4003

    Article  CAS  PubMed  Google Scholar 

  93. Efendiev R et al. (2004) Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-mu2 phosphorylation and impaired Na+K+-ATPase trafficking in response to GPCR signals and intracellular sodium. Circ Res 95: 1100–1108

    Article  CAS  PubMed  Google Scholar 

  94. Zhang J et al. (2005) Sodium pump α2 subunits control myogenic tone and blood pressure in mice. J Physiol 569: 243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu J et al. (2004) Ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism. Kidney Int 66: 227–241

    Article  CAS  PubMed  Google Scholar 

  96. Liu J et al. (2005) Ouabain-induced endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells requires caveolin-1. Kidney Int 67: 1844–1854

    Article  CAS  PubMed  Google Scholar 

  97. Nguyen AN et al. (2007) Ouabain binds with high affinity to the Na,K-ATPase in human polycystic kidney cells and induces extracellular signal-regulated kinase activation and cell proliferation. J Am Soc Nephrol 18: 46–57

    Article  CAS  PubMed  Google Scholar 

  98. Wang JG et al. (2003) Salt, endogenous ouabain and blood pressure interactions in the general population. J Hypertens 21: 1475–1481

    Article  CAS  PubMed  Google Scholar 

  99. Ferrari P et al. (1999) PST 2238: a new antihypertensive compound that modulates Na,K-ATPase in genetic hypertension. J Pharmacol Exp Ther 288: 1074–1083

    CAS  PubMed  Google Scholar 

  100. Huang BS and Leenen FH (1996) Brain 'ouabain' and angiotensin II in salt-sensitive hypertension in spontaneously hypertensive rats. Hypertension 28: 1005–1012

    Article  CAS  PubMed  Google Scholar 

  101. Huang BS and Leenen FH (1998) Both brain angiotensin II and 'ouabain' contribute to sympathoexcitation and hypertension in Dahl S rats on high salt intake. Hypertension 32: 1028–1033

    Article  CAS  PubMed  Google Scholar 

  102. Fedorova OV et al. (2007) Intrahippocampal microinjection of an exquisitely low dose of ouabain mimics NaCl loading and stimulates a bufadienolide Na/K-ATPase inhibitor. J Hypertens 25: 1834–1844

    Article  CAS  PubMed  Google Scholar 

  103. Fedorova OV et al. (2005) Brain ouabain stimulates peripheral marinobufagenin via angiotensin II signalling in NaCl loaded Dahl-S rats. J Hypertens 23: 1515–1523

    Article  CAS  PubMed  Google Scholar 

  104. Takahashi H et al. (1984) Centrally-induced vasopressor responses to sodium-potassium adenosine triphosphatase inhibitor, ouabain, may be mediated via angiotensin II in the anteroventral third ventricle in the brain. Jpn Circ J 48: 1243–1250

    Article  CAS  PubMed  Google Scholar 

  105. Huang BS and Leenen FHH (1996) Sympathoexcitatory and pressor responses to increased brain sodium and ouabain are mediated via brain ANGII. Am J Physiol 270: H275–H280

    CAS  PubMed  Google Scholar 

  106. Huang BS et al. (2004) Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on a high-salt diet. Am J Physiol Heart Circ Physiol 287: H1160–H1166

    Article  CAS  PubMed  Google Scholar 

  107. Wang H and Leenen FH (2003) Brain sodium channels and central sodium-induced increases in brain ouabain-like compound and blood pressure. J Hypertens 21: 1519–1524

    Article  CAS  PubMed  Google Scholar 

  108. Amin MS et al. (2005) Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol 289: R1787–R1797

    Article  CAS  PubMed  Google Scholar 

  109. Orlov SN and Mongin AA (2007) Salt-sensing mechanisms in blood pressure regulation and hypertension. Am J Physiol Heart Circ Physiol 293: H2039–H2053

    Article  CAS  PubMed  Google Scholar 

  110. Fedorova OV et al. (1998) Endogenous marinobufagenin-like factor in acute plasma volume expansion. Clin Exp Hypertens 20: 581–591

    Article  CAS  PubMed  Google Scholar 

  111. Periyasamy SM et al. (2005) Salt loading induces redistribution of the plasmalemmal Na/K-ATPase in proximal tubule cells. Kidney Int 67: 1868–1877

    Article  CAS  PubMed  Google Scholar 

  112. Fedorova OV and Bagrov AY (1997) Inhibition of Na/K ATPase from rat aorta by two Na/K pump inhibitors, ouabain and marinobufagenin: evidence of interaction with different alpha-subunit isoforms. Am J Hypertens 10: 929–935

    Article  CAS  PubMed  Google Scholar 

  113. Dahl LK et al. (1969) Humoral transmission of hypertension: evidence from parabiosis. Circ Res 24 (Suppl): S21–S33

    Google Scholar 

  114. Liu J and Shapiro JI (2007) Regulation of sodium pump endocytosis by cardiotonic steroids: Molecular mechanisms and physiological implications. Pathophysiology 14: 171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu J et al. (2002) Effects of cardiac glycosides on sodium pump expression and function in LLC-PK1 and MDCK cells. Kidney Int 62: 2118–2125

    Article  CAS  PubMed  Google Scholar 

  116. Oweis S et al. (2006) Cardiac glycoside downregulates NHE3 activity and expression in LLC-PK1 cells. Am J Physiol Renal Physiol 290: F997–F1008

    Article  CAS  PubMed  Google Scholar 

  117. Cai H et al. (2008) Regulation of apical NHE3 trafficking by ouabain-induced activation of basolateral Na/K-ATPase receptor complex. Am J Physiol Cell Physiol 294: C555–C563

    Article  CAS  PubMed  Google Scholar 

  118. Schrier RW and Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341: 577–585

    Article  CAS  PubMed  Google Scholar 

  119. Schreiber V et al. (1981) Digoxin-like immunoreactivity in the serum of rats with cardiac overload. J Mol Cell Cardiol 13: 107–110

    Article  CAS  PubMed  Google Scholar 

  120. Morise T et al. (1988) Biological activity of partially purified digitalis-like substance and Na-K-ATPase inhibitor in rats. Jpn Circ J 52: 1309–1316

    Article  CAS  PubMed  Google Scholar 

  121. Liu ZQ et al. (1990) Intra-cellular electrolyte changes and levels of endogenous digoxin-like substance within the plasma in patients with congestive heart failure. Int J Cardiol 27: 47–53

    Article  CAS  PubMed  Google Scholar 

  122. Gottlieb SS et al. (1992) Elevated concentrations of endogenous ouabain in patients with congestive heart failure. Circulation 86: 420–425

    Article  CAS  PubMed  Google Scholar 

  123. Manunta P et al. (1999) Left ventricular mass, stroke volume, and ouabain-like factor in essential hypertension. Hypertension 34: 450–456

    Article  CAS  PubMed  Google Scholar 

  124. Pierdomenico SD et al. (2001) Endogenous ouabain and hemodynamic and left ventricular geometric patterns in essential hypertension. Am J Hypertens 14: 44–50

    Article  CAS  PubMed  Google Scholar 

  125. Balzan S et al. (2001) Increased circulating levels of ouabain-like factor in patients with asymptomatic left ventricular dysfunction. Eur J Heart Fail 3: 165–171

    Article  CAS  PubMed  Google Scholar 

  126. Pitzalis MV et al. (2006) Independent and incremental prognostic value of endogenous ouabain in idiopathic dilated cardiomyopathy. Eur J Heart Fail 8: 179–186

    Article  CAS  PubMed  Google Scholar 

  127. Stella P et al. (2008) Endogenous ouabain and cardiomyopathy in dialysis patients. J Intern Med 263: 274–280

    Article  CAS  PubMed  Google Scholar 

  128. Fedorova OV et al. (2004) Coordinated shifts in Na/K-ATPase isoforms and their endogenous ligands during cardiac hypertrophy and failure in NaCl-sensitive hypertension. J Hypertens 22: 389–397

    Article  CAS  PubMed  Google Scholar 

  129. Akimova OA et al. (2005) Cardiotonic steroids differentially affect intracellular Na+ and [Na+]i/[K+]i-independent signaling in C7-MDCK cells. J Biol Chem 280: 832–839

    Article  CAS  PubMed  Google Scholar 

  130. Neuss M et al. (2001) Apoptosis in cardiac disease-what is it-how does it occur. Cardiovasc Drugs Ther 15: 507–523

    Article  CAS  PubMed  Google Scholar 

  131. Mohmand B et al. (2005) Uremic cardiomyopathy: role of circulating digitalis like substances. Front Biosci 10: 2036–2044

    Article  CAS  PubMed  Google Scholar 

  132. Middleton RJ et al. (2001) Left ventricular hypertrophy in the renal patient. J Am Soc Nephrol 12: 1079–1084

    CAS  PubMed  Google Scholar 

  133. Kennedy DJ et al. (2003) Effect of chronic renal failure on cardiac contractile function, calcium cycling, and gene expression of proteins important for calcium homeostasis in the rat. J Am Soc Nephrol 14: 90–97

    Article  CAS  PubMed  Google Scholar 

  134. Kennedy DJ et al. (2008) Partial nephrectomy as a model for uremic cardiomyopathy in the mouse. Am J Physiol Renal Physiol 294: F450–F454

    Article  CAS  PubMed  Google Scholar 

  135. Elkareh J et al. (2007) Marinobufagenin stimulates fibroblast collagen production and causes fibrosis in experimental uremic cardiomyopathy. Hypertension 49: 215–224

    Article  CAS  PubMed  Google Scholar 

  136. Kennedy DJ et al. (2006) Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension 47: 488–495

    Article  CAS  PubMed  Google Scholar 

  137. London GM (2002) Left ventricular alterations and end-stage renal disease. Nephrol Dial Transplant 17 (Suppl 1): S29–S36

    Article  Google Scholar 

  138. Gallery ED et al. (1979) Plasma volume contraction: a significant factor in both pregnancy-associated hypertension (pre-eclampsia) and chronic hypertension in pregnancy. Q J Med 192: 593–602

    Google Scholar 

  139. Masilamani S and Baylis C (1994) Pregnant rats are refractory to the natriuretic actions of ANP. Am J Physiol 267: R1611–R1616

    CAS  PubMed  Google Scholar 

  140. Graves SW (1987) The possible role of digitalislike factors in pregnancy-induced hypertension. Hypertension 10: I84–I86

    Article  CAS  PubMed  Google Scholar 

  141. Graves SW et al. (1984) Endogenous digoxin-immunoreactive substance in human pregnancies. J Clin Endocrinol Metab 58: 748–751

    Article  CAS  PubMed  Google Scholar 

  142. Averina IV et al. (2006) Endogenous Na/K-ATPase inhibitors in patients with preeclampsia. Cell Mol Biol (Noisy-le-grand) 52: 19–23

    CAS  Google Scholar 

  143. Goodlin RC (1988) Antidigoxin antibodies in eclampsia. N Engl J Med 318: 518–519

    Article  CAS  PubMed  Google Scholar 

  144. Adair CD et al. (1996) Elevated endoxin-like factor complicating a multifetal second trimester pregnancy: treatment with digoxin-binding immunoglobulin. Am J Nephrol 16: 529–531

    Article  CAS  PubMed  Google Scholar 

  145. Adair D et al. (1997) Effects of Fab digoxin-specific antibodies on mean arterial pressure in severe preeclampsia [abstract]. Am J Hypertens 10: 11A

    Article  Google Scholar 

  146. Di Grande A et al. (1993) Release of a substance from the human placenta having digoxin-like immunoreactivity. Clin Exp Pharmacol Physiol 20: 603–607

    Article  CAS  PubMed  Google Scholar 

  147. Amler E et al. (1994) Human hypertensive placenta contains an increased amount of Na,K-ATPase with higher affinity for cardiac glycosides. Cell Biol Int 18: 723–727

    Article  CAS  PubMed  Google Scholar 

  148. Dmitrieva RI et al. (2000) Mammalian bufadienolide is synthesized from cholesterol in the adrenal cortex by a pathway that is independent of cholesterol side-chain cleavage. Hypertension 36: 442–448

    Article  CAS  PubMed  Google Scholar 

  149. Fedorova OV et al. (2005) Antibody to marinobufagenin lowers blood pressure in pregnant rats on a high NaCl intake. J Hypertens 23: 835–842

    Article  CAS  PubMed  Google Scholar 

  150. Vu HV et al. (2005) Involvement of marinobufagenin in a rat model of human preeclampsia. Am J Nephrol 25: 520–528

    Article  CAS  PubMed  Google Scholar 

  151. LaMarca HL et al. (2006) Marinobufagenin impairs first trimester cytotrophoblast differentiation. Placenta 27: 984–988

    Article  CAS  PubMed  Google Scholar 

  152. Weidemann H et al. (2004) Diverse effects of stress and additional adrenocorticotropic hormone on digitalis-like compounds in normal and nude mice. J Neuroendocrinol 16: 458–463

    Article  CAS  PubMed  Google Scholar 

  153. Bauer N et al. (2005) Ouabain-like compound changes rapidly on physical exercise in humans and dogs: effects of beta-blockade and angiotensin-converting enzyme inhibition. Hypertension 45: 1024–1028

    Article  CAS  PubMed  Google Scholar 

  154. Bagrov AY et al. (1993) Effect of antidigoxin antibody on myocardial Na,K-pump activity and of endogenous digoxin-like factor in acute myocardial ischemia in rats. Cardiovasc Res 27: 1045–1050

    Article  CAS  PubMed  Google Scholar 

  155. Grider G et al. (1999) Endogenous digoxin-like immunoreactive factor (DLIF) serum concentrations are decreased in manic bipolar patients compared to normal controls. J Affect Disord 54: 261–267

    Article  CAS  PubMed  Google Scholar 

  156. Goldstein I et al. (2006) Involvement of Na(+), K(+)-ATPase and endogenous digitalis-like compounds in depressive disorders. Biol Psychiatry 60: 491–499

    Article  CAS  PubMed  Google Scholar 

  157. Bagrov YY et al. (1999) Involvement of endogenous digitalis-like factors in voluntary selection of alcohol by rats. Life Sci 64: PL219–PL225

    Article  CAS  PubMed  Google Scholar 

  158. Clerico A and Giampietro O (1990) Is the endogenous digitalis-like factor the link between hypertension and metabolic disorders as diabetes mellitus, obesity and acromegaly? Clin Physiol Biochem 8: 153–168

    CAS  PubMed  Google Scholar 

  159. Chen S et al. (1993) Role of digitalis-like substance in the hypertension of streptozotocin-induced diabetes in reduced renal mass rats. Am J Hypertens 6: 397–406

    Article  CAS  PubMed  Google Scholar 

  160. Bagrov YY et al. (2005) Endogenous digitalis-like ligands and Na/K-ATPase inhibition in experimental diabetes mellitus. Front Biosci 10: 2257–2262

    Article  CAS  PubMed  Google Scholar 

  161. Carroll JS et al. (2001) Digitalis-like factor response to hyperinsulinemia accompanying a euglycemic hyperinsulinemic clamp or oral glucose tolerance test. Life Sci 69: 829–837

    Article  CAS  PubMed  Google Scholar 

  162. Weidemann H (2005) Na/K-ATPase, endogenous digitalis like compounds and cancer development—a hypothesis. Front Biosci 10: 2165–2176

    Article  CAS  PubMed  Google Scholar 

  163. Mijatovic T et al. (2007) Cardiotonic steroids on the road to anti-cancer therapy. Biochim Biophys Acta 1776: 32–57

    CAS  PubMed  Google Scholar 

  164. Ferrandi M et al. (2005) Ouabain antagonists as antihypertensive agents. Curr Pharm Des 11: 3301–3305

    Article  CAS  PubMed  Google Scholar 

  165. ClinicalTrials.gov (online 2006) Efficacy of Rostafuroxin in the treatment of essential hypertension. [http://clinicaltrials.gov/ct2/show/NCT00415038] (accessed 12 March 2008)

  166. Finotti P and Palatini P (1981) Canrenone as a partial agonist at the digitalis receptor site of sodium-potassium-activated adenosine triphosphatase. J Pharmacol Exp Ther 217: 784–790

    CAS  PubMed  Google Scholar 

  167. de Mendonça M et al. (1988) Antihypertensive effect of canrenone in a model where endogenous ouabain-like factors are present. J Cardiovasc Pharmacol 11: 75–83

    Article  PubMed  Google Scholar 

  168. Waldorff S and Buch J (1979) Canrenoate—a spironolactone metabolite: acute cardiac effects in digitalized patients. Eur J Cardiol 10: 143–149

    CAS  PubMed  Google Scholar 

  169. ClinicalTrials.gov (online 2005) Efficacy study of Digibind for treatment of severe preeclampsia. [http://clinicaltrials.gov/show/NCT00158743] (accessed 12 March 2008)

  170. Menezes JC et al. (2003) Digoxin antibody decreases natriuresis and diuresis in cerebral hemorrhage. Intensive Care Med 29: 2291–2296

    Article  PubMed  Google Scholar 

  171. Fedorova OV et al. (2003) Reduction in myocardial PKC β2, Na/K-ATPase sensitivity to marinobufagenin and blood pressure in response to cicletanine. Hypertension 41: 505–511

    Article  CAS  PubMed  Google Scholar 

  172. Fedorova OV et al. (2006) ANP differentially modulates marinobufagenin-induced sodium pump inhibition in kidney and aorta. Hypertension 48: 1160–1168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by the Intramural Research Program of the National Institute on Aging, part of the NIH. We would like to thank Dr Olga V Fedorova for critical review of the manuscript and Ms Carol Woods for her excellent secretarial efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Y Bagrov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagrov, A., Shapiro, J. Endogenous digitalis: pathophysiologic roles and therapeutic applications. Nat Rev Nephrol 4, 378–392 (2008). https://doi.org/10.1038/ncpneph0848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0848

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing