Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: the use of intravenous immunoglobulin in neurology—therapeutic considerations and practical issues

Abstract

Over the past few years, we have achieved increasing success in the treatment of a number of autoimmune-mediated disorders affecting nerves and muscles. This success is partly attributable to the use of high-dose polyclonal intravenous immunoglobulin (IVIg), which has dramatically changed our treatment options. On the basis of results from controlled, but non-FDA-approved, clinical trials, IVIg is now the treatment of choice for Guillain–Barré syndrome, chronic idiopathic inflammatory demyelinating polyneuropathy and multifocal motor neuropathy; IVIg offers rescue therapy for patients with rapidly worsening myasthenia gravis, and is a second-line therapy for dermatomyositis, stiff-person syndrome, and pregnancy-associated or postpartum multiple sclerosis attacks. The ability of IVIg to treat such immunologically diverse disorders effectively, coupled with its excellent safety profile, has led clinicians to use the drug more liberally, even in diseases for which the data are weak and not evidence-based and in patients with coexisting conditions. Use of IVIg for such indications can increase the risk of complications while raising the cost of the drug. Practical issues regarding dosing and frequency of infusions generate dilemmas in clinical practice. In this article, we review the current indications for IVIg treatment, address practical issues related to the use and costs of the drug, and summarize its mechanisms of action.

Key Points

  • Intravenous immunoglobulin (IVIg), a natural blood product, has an important role in the treatment of numerous neuroimmunological disorders

  • Currently, it is assumed that multiple therapeutic effects of IVIg act in concert

  • IVIg is the treatment of choice for Guillain–Barré syndrome, chronic idiopathic inflammatory demyelinating polyneuropathy and multifocal motor neuropathy

  • IVIg offers rescue therapy in myasthenia gravis, and second-line therapy for dermatomyositis and stiff-person syndrome

  • Possible novel indications for IVIg include postpolio syndrome, narcolepsy and Alzheimer's disease

  • Increased use of IVIg might have a negative impact on availability and costs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Imbach P et al. (1981) High dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 317: 1228–1231

    Article  Google Scholar 

  2. Gold R et al. (2003) Immunotherapy in autoimmune neuromuscular disorders. Lancet Neurol 2: 22–32

    Article  CAS  PubMed  Google Scholar 

  3. Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2: 389–400

    Article  CAS  PubMed  Google Scholar 

  4. Kazatchkine MD and Kaveri SV (2001) Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 345: 747–755

    Article  CAS  PubMed  Google Scholar 

  5. Misra N et al. (2005) Intravenous immunoglobulin and dendritic cells. Clin Rev Allergy Immunol 29: 201–205

    Article  CAS  PubMed  Google Scholar 

  6. Buchwald B et al. (2002) Intravenous immunoglobulins neutralize blocking antibodies in Guillain–Barré syndrome. Ann Neurol 51: 673–680

    Article  CAS  PubMed  Google Scholar 

  7. Jacobs BC et al. (2003) Immunoglobulins inhibit pathophysiological effects of anti-GQ1b-positive sera at motor nerve terminals through inhibition of antibody binding. Brain 126: 2220–2234

    Article  PubMed  Google Scholar 

  8. Shoenfeld Y et al. (2002) Efficacy of IVIG affinity-purified anti-double-stranded DNA anti-idiotypic antibodies in the treatment of an experimental murine model of systemic lupus erythematosus. Int Immunol 14: 1303–1311

    Article  CAS  PubMed  Google Scholar 

  9. Stangel M and Gold R (2004) Use of i.v. immunoglobulins in neurology: evidence-based consensus [German]. Nervenarzt 75: 801–815

    Article  CAS  PubMed  Google Scholar 

  10. Stangel M and Gold R (2005) Intravenous immunoglobulins in MS. Int MS J 12: 4–10

    Google Scholar 

  11. Achiron A et al. (2004) Effect of intravenous immunoglobulin treatment on pregnancy and postpartum-related relapses in multiple sclerosis. J Neurol 251: 1133–1137

    Article  CAS  PubMed  Google Scholar 

  12. Keegan M et al. (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366: 579–582

    Article  PubMed  Google Scholar 

  13. Levy Y et al. (1999) A study of 20 SLE patients with intravenous immunoglobulin—clinical and serologic response. Lupus 8: 705–712

    Article  CAS  PubMed  Google Scholar 

  14. van der Meche FG and Schmitz PI (1992) A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain–Barré syndrome. N Engl J Med 326: 1123–1129

    Article  CAS  PubMed  Google Scholar 

  15. Plasma Exchange/Sandoglobulin Guillain–Barré Syndrome Trial Group (1997) Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain–Barré syndrome. Lancet 349: 225–230

  16. Visser LH et al. (1995) Guillain–Barré syndrome without sensory loss (acute motor neuropathy): a subgroup with specific clinical, electrodiagnostic and laboratory features. Dutch Guillain–Barré Study Group. Brain 118: 841–847

    Article  PubMed  Google Scholar 

  17. Hadden RD et al. (1998) Electrophysiological classification of Guillain–Barré syndrome: clinical associations and outcome. Plasma Exchange/Sandoglobulin Guillain–Barré Syndrome Trial Group. Ann Neurol 44: 780–788

    Article  CAS  PubMed  Google Scholar 

  18. van Koningsveld R et al. (2004) Effect of methylprednisolone when added to standard treatment with intravenous immunoglobulin for Guillain–Barré syndrome: randomised trial. Lancet 363: 192–196

    Article  CAS  PubMed  Google Scholar 

  19. Raphael JC et al. (2001) Intravenous immune globulins in patients with Guillain–Barré syndrome and contraindications to plasma exchange: 3 days versus 6 days. J Neurol Neurosurg Psychiatry 71: 235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hahn AF et al. (1996) Intravenous immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy—a double-blind, placebo-controlled, cross-over study. Brain 119: 1067–1077

    Article  PubMed  Google Scholar 

  21. Hughes R et al. (2001) Randomized controlled trial of intravenous immunoglobulin versus oral prednisolone in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol 50: 195–201

    Article  CAS  PubMed  Google Scholar 

  22. Mendell JR et al. (2001) Randomized controlled trial of IVIg in untreated chronic inflammatory demyelinating polyradiculoneuropathy. Neurology 56: 445–449

    Article  CAS  PubMed  Google Scholar 

  23. Dyck PJ et al. (1994) A plasma exchange versus immune globulin infusion trial in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol 36: 838–845

    Article  CAS  PubMed  Google Scholar 

  24. Federico P et al. (2000) Multifocal motor neuropathy improved by IVIg: randomized, double-blind, placebo-controlled study. Neurology 55: 1256–1262

    Article  CAS  PubMed  Google Scholar 

  25. Leger JM et al. (2001) Intravenous immunoglobulin therapy in multifocal motor neuropathy: a double-blind, placebo-controlled study. Brain 124: 145–153

    Article  CAS  PubMed  Google Scholar 

  26. Van den Berg LH et al. (1995) Treatment of multifocal motor neuropathy with high dose intravenous immunoglobulins: a double blind, placebo controlled study. J Neurol Neurosurg Psychiatry 59: 248–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Terenghi F et al. (2004) How long is IVIg effective in multifocal motor neuropathy? Neurology 62: 666–668

    Article  CAS  PubMed  Google Scholar 

  28. Comi G et al. (2002) A randomised controlled trial of intravenous immunoglobulin in IgM paraprotein associated demyelinating neuropathy. J Neurol 249: 1370–1377

    Article  CAS  PubMed  Google Scholar 

  29. Dalakas MC et al. (1996) A controlled study of intravenous immunoglobulin in demyelinating neuropathy with IgM gammopathy. Ann Neurol 40: 792–795

    Article  CAS  PubMed  Google Scholar 

  30. Renaud S et al. (2003) Rituximab in the treatment of polyneuropathy associated with anti-MAG antibodies. Muscle Nerve 27: 611–615

    Article  CAS  PubMed  Google Scholar 

  31. Gajdos P et al. (1997) Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Ann Neurol 41: 789–796

    Article  CAS  PubMed  Google Scholar 

  32. Gajdos P et al. (2005) Treatment of myasthenia gravis exacerbation with intravenous immunoglobulin—a randomized double-blind clinical trial. Arch Neurol 62: 1689–1693

    Article  PubMed  Google Scholar 

  33. Dalakas MC et al. (1993) A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N Engl J Med 329: 1993–2000

    Article  CAS  PubMed  Google Scholar 

  34. Dalakas MC et al. (1997) Treatment of inclusion-body myositis with IVIg: a double-blind, placebo-controlled study. Neurology 48: 712–716

    Article  CAS  PubMed  Google Scholar 

  35. Walter M et al. (2000) High-dose immunoglobulin therapy in sporadic inclusion body myositis: a double-blind, placebo-controlled study. J Neurol 247: 22–28

    Article  CAS  PubMed  Google Scholar 

  36. Sommer C et al. (2005) Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 365: 1406–1411

    Article  CAS  PubMed  Google Scholar 

  37. Dalakas MC et al. (2001) High-dose intravenous immune globulin for stiff-person syndrome. N Engl J Med 345: 1870–1876

    Article  CAS  PubMed  Google Scholar 

  38. Du Y et al. (2001) Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology 57: 801–805

    Article  CAS  PubMed  Google Scholar 

  39. Dodel R et al. (2002) Human antibodies against amyloid beta peptide: a potential treatment for Alzheimer's disease. Ann Neurol 52: 253–256

    Article  CAS  PubMed  Google Scholar 

  40. Dodel RC et al. (2004) Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer's disease. J Neurol Neurosurg Psychiatry 75: 1472–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonzalez H et al. (2002) Prior poliomyelitis—evidence of cytokine production in the central nervous system. J Neurol Sci 205: 9–13

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez H et al. (2004) Prior poliomyelitis—IVIg treatment reduces proinflammatory cytokine production. J Neuroimmunol 150: 139–144

    Article  CAS  PubMed  Google Scholar 

  43. Gonzalez H et al. (2006) Intravenous immunoglobulin for post-polio syndrome: a randomised controlled trial. Lancet Neurol 5: 493–500

    Article  CAS  PubMed  Google Scholar 

  44. Siegel JM and Boehmer LN (2006) Narcolepsy and the hypocretin system—where motion meets emotion. Nat Clin Pract Neurol 2: 548–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dauvilliers Y et al. (2004) Successful management of cataplexy with intravenous immunoglobulins at narcolepsy onset. Ann Neurol 56: 905–908

    Article  CAS  PubMed  Google Scholar 

  46. Dauvilliers Y (2006) Follow-up of four narcolepsy patients treated with intravenous immunoglobulins. Ann Neurol 60: 153

    Article  PubMed  Google Scholar 

  47. Stangel M et al. (2003) Side effects of intravenous immunoglobulins in neurological autoimmune disorders—a prospective study. J Neurol 250: 818–821

    Article  PubMed  Google Scholar 

  48. Dalakas MC (1999) Intravenous immunoglobulin in the treatment of autoimmune neuromuscular diseases: present status and practical therapeutic guidelines. Muscle Nerve 22: 1479–1497

    Article  CAS  PubMed  Google Scholar 

  49. Voltz R et al. (1996) Reversible encephalopathy with cerebral vasospasm in a Guillain–Barré syndrome patient treated with intravenous immunoglobulin. Neurology 46: 250–251

    Article  CAS  PubMed  Google Scholar 

  50. Jarius S (2002) Intravenous immunoglobulin preparations contain atypical antineutrophil antibodies and cause an oxidative burst in neutrophils. J Neurol 249 (Suppl 1): I/58

    PubMed  Google Scholar 

  51. Katz U and Schoenfeld Y (2005) Review: intravenous immunoglobulin therapy and thromboembolic complications. Lupus 14: 802–808

    Article  CAS  PubMed  Google Scholar 

  52. Okuda D et al. (2003) Arterial thrombosis induced by IVIg and its treatment with tPA. Neurology 60: 1825–1826

    Article  PubMed  Google Scholar 

  53. Caress JB et al. (2003) The clinical features of 16 cases of stroke associated with administration of IVIg. Neurology 60: 1822–1824

    Article  CAS  PubMed  Google Scholar 

  54. Orbach H et al. (2005) Intravenous immunoglobulin: adverse effects and safe administration. Clin Rev Allergy Immunol 29: 173–184

    Article  CAS  PubMed  Google Scholar 

  55. Ahsan N et al. (1996) Acute renal failure following immunoglobulin therapy. Am J Nephrol 16: 532–536

    Article  CAS  PubMed  Google Scholar 

  56. Ahsan N et al. (1994) Intravenous immunoglobulin-induced osmotic nephrosis. Arch Int Med 154: 1985–1987

    Article  CAS  Google Scholar 

  57. Dalakas MC (1997) Intravenous immune globulin therapy for neurologic diseases. Ann Intern Med 126: 721–730

    Article  CAS  PubMed  Google Scholar 

  58. Spath PJ et al. (2001) Production, tolerability and virus safety of intravenous immunoglobulins [German]. In Immunoglobulins in Clinical Neurology, 1–42 (Ed Berlit P) Darmstadt: Steinkopff Verlag

    Google Scholar 

  59. Dalakas MC: Practical guidelines in the administration of IVIg in neurological diseases. J Neurol Sci, in press

  60. McCrone P et al. (2003) Cost-utility analysis of intravenous immunoglobulin and prednisolone for chronic inflammatory demyelinating polyradiculoneuropathy. Eur J Neurol 10: 687–694

    Article  PubMed  Google Scholar 

  61. Hanchett M et al. (2004) Current issues in immunoglobulin therapies. J Assoc Vasc Access 9: 156–158

    Article  Google Scholar 

  62. Reid B (online 22 August 2005) IVIG shortage driving patients to hospitals [http://www.drugtopics.com/drugtopics/article/articleDetail.jsp?id=175684&searchString=ivig%20shortage] (accessed 19 October 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Gold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, R., Stangel, M. & Dalakas, M. Drug Insight: the use of intravenous immunoglobulin in neurology—therapeutic considerations and practical issues. Nat Rev Neurol 3, 36–44 (2007). https://doi.org/10.1038/ncpneuro0376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing