Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: epithelial–mesenchymal transition—does cellular plasticity fuel neoplastic progression?

Abstract

Epithelial–mesenchymal transition (EMT) is a phenotypic conversion that facilitates organ morphogenesis and tissue remodeling in physiological processes, such as embryonic development and wound healing. A similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, and is associated with disease progression. EMT in cancer epithelial cells often seems to be an incomplete and bidirectional process. In this Review, we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of RAS-controlled signaling mediators, ERK1, ERK2 and phosphatidylinositol 3-kinase, as microenvironmental responsive regulators of EMT.

Key Points

  • Fibroblast activity (e.g. desmoplasia and stromal transcriptomes) are associated with poor outcome in cancers

  • Epithelial–mesenchymal transition (EMT) of epithelial cancer cells contributes to this activity in the peritumor stroma, and EMT is a subset of the more generalized cell phenotype plasticity exhibited by aggressive tumor cells

  • Clear evidence for EMT of tumor cells in human tumors is rare, and this might be owing to its transient and dynamic nature

  • The clinical significance of EMT is still under study but has been associated with the metastatic/invasive phenotype and specific breast carcinoma subtypes

  • Study of EMT has focused on its role in active dissemination of tumor cells (e.g. migration and invasion), but emerging evidence suggests a broader functional role in tumor progression, including drug resistance and immune modulation

  • RAS-regulated pathways connect regulation of EMT to the tumor microenvironment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common morphologic characteristics of epithelial and mesenchymal cells.
Figure 2: EMT of mammary epithelial cells.
Figure 3: The dynamic role of EMT in mammary gland neoplastic processes.
Figure 4: Overlap between the EMT gene signature of EpH4 mammary cells and that of the embryonic palate.
Figure 5: Microenvironmental and spatial regulation of signaling pathways controlling EMT.

Similar content being viewed by others

References

  1. Lee JM et al. (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172: 973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Valles AM et al. (1990) Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc Natl Acad Sci USA 87: 1124–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kalluri R and Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112: 1776–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Desmouliere A et al. (2004) The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 48: 509–517

    Article  CAS  PubMed  Google Scholar 

  5. Nuyten DS et al. (2006) Predicting a local recurrence after breast-conserving therapy by gene expression profiling. Breast Cancer Res 8: R62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chang HY et al. (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2: E7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Chang HY et al. (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102: 3738–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Radisky DC et al. (2007) Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 101: 830–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adler AS and Chang HY (2006) From description to causality: mechanisms of gene expression signatures in cancer. Cell Cycle 5: 1148–1151

    Article  CAS  PubMed  Google Scholar 

  10. Liu ET et al. (2006) In the pursuit of complexity: systems medicine in cancer biology. Cancer Cell 9: 245–247

    Article  CAS  PubMed  Google Scholar 

  11. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15: 740–746

    Article  CAS  PubMed  Google Scholar 

  12. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154: 8–20

    Article  CAS  Google Scholar 

  13. McAnulty RJ (2007) Fibroblasts and myofibroblasts: their source, function and role in disease. Int J Biochem Cell Biol 39: 666–671

    Article  CAS  PubMed  Google Scholar 

  14. Willis BC et al. (2006) Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 3: 377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neilson EG (2006) Mechanisms of Disease: fibroblasts—a new look at an old problem. Nat Clin Pract Nephrol 2: 101–108

    Article  CAS  PubMed  Google Scholar 

  16. Faulkner JL et al. (2005) Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. Am J Pathol 167: 1193–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15: 1–12

    Article  CAS  PubMed  Google Scholar 

  18. Zvaifler NJ (2006) Relevance of the stroma and epithelial-mesenchymal transition (EMT) for the rheumatic diseases. Arthritis Res Ther 8: 210

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vincent-Salomon A and Thiery JP (2003) Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res 5: 101–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang Z et al. (2001) Transdifferentiation of neoplastic cells. Med Hypotheses 57: 655–666

    Article  CAS  PubMed  Google Scholar 

  21. Katoh M (2005) Epithelial-mesenchymal transition in gastric cancer. Int J Oncol 27: 1677–1683

    CAS  PubMed  Google Scholar 

  22. Bates RC and Mercurio AM (2005) The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 4: 365–370

    Article  CAS  PubMed  Google Scholar 

  23. Yang J et al. (2006) Exploring a new twist on tumor metastasis. Cancer Res 66: 4549–4552

    Article  CAS  PubMed  Google Scholar 

  24. Kalluri R and Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6: 392–401

    Article  CAS  PubMed  Google Scholar 

  25. Thiery JP and Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142

    Article  CAS  PubMed  Google Scholar 

  26. Boyer B et al. (1989) Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line. Int J Cancer Suppl 4: 69–75

    Article  CAS  PubMed  Google Scholar 

  27. Nelson CM et al. (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314: 298–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jechlinger M et al. (2003) Expression profiling of epithelial plasticity in tumor progression. Oncogene 22: 7155–7169

    Article  CAS  PubMed  Google Scholar 

  29. LaGamba D et al. (2005) Microarray analysis of gene expression during epithelial-mesenchymal transformation. Dev Dyn 234: 132–142

    Article  CAS  PubMed  Google Scholar 

  30. Roepman P et al. (2006) Maintenance of head and neck tumor gene expression profiles upon lymph node metastasis. Cancer Res 66: 11110–11114

    Article  CAS  PubMed  Google Scholar 

  31. Bacac M et al. (2006) A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival. PLoS ONE 1: e32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Brabletz T et al. (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179: 56–65

    Article  CAS  PubMed  Google Scholar 

  33. Christiansen JJ and Rajasekaran AK (2006) Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 66: 8319–8326

    Article  CAS  PubMed  Google Scholar 

  34. Fridriksdottir AJ et al. (2005) Maintenance of cell type diversification in the human breast. J Mammary Gland Biol Neoplasia 10: 61–74

    Article  PubMed  Google Scholar 

  35. Petersen OW et al. (2001) The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion. Breast Cancer Res 3: 213–217

    Article  CAS  PubMed  Google Scholar 

  36. Gudjonsson T et al. (2005) Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia 10: 261–272

    Article  PubMed  PubMed Central  Google Scholar 

  37. Adriance MC et al. (2005) Myoepithelial cells: good fences make good neighbors. Breast Cancer Res 7: 190–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Petersen OW et al. (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162: 391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tarin D et al. (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65: 5996–6000

    Article  CAS  PubMed  Google Scholar 

  40. Spaderna S et al. (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131: 830–840

    Article  CAS  PubMed  Google Scholar 

  41. Alonso SR et al. (2007) A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 67: 3450–3460

    Article  CAS  PubMed  Google Scholar 

  42. Lien HC et al. (2007) Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial-mesenchymal transition. Oncogene 26: 7859–7871

    Article  CAS  PubMed  Google Scholar 

  43. Chung CH et al. (2006) Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-κB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 66: 8210–8218

    Article  CAS  PubMed  Google Scholar 

  44. Barrallo-Gimeno A and Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132: 3151–3161

    Article  CAS  PubMed  Google Scholar 

  45. Fournier MV et al. (2006) Gene expression signature in organized and growth-arrested mammary acini predicts good outcome in breast cancer. Cancer Res 66: 7095–7102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. van't Veer LJ et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536

    Article  CAS  Google Scholar 

  47. Chaffer CL et al. (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66: 11271–11278

    Article  CAS  PubMed  Google Scholar 

  48. Nieuwenhuis MH et al. (2007) Genotype-phenotype correlations as a guide in the management of familial adenomatous polyposis. Clin Gastroenterol Hepatol 5: 374–378

    Article  PubMed  Google Scholar 

  49. Han G et al. (2005) Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 115: 1714–1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zavadil J et al. (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci USA 98: 6686–6691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85: 47–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hudson LG et al. (2007) Ultraviolet radiation stimulates expression of Snail family transcription factors in keratinocytes. Mol Carcinog 46: 257–268

    Article  CAS  PubMed  Google Scholar 

  53. Prindull G and Zipori D (2004) Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood 103: 2892–2899

    Article  CAS  PubMed  Google Scholar 

  54. Rastaldi MP (2006) Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol 19: 407–412

    CAS  PubMed  Google Scholar 

  55. Savagner P et al. (2005) Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol 202: 858–866

    Article  CAS  PubMed  Google Scholar 

  56. Yauch RL et al. (2005) Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11: 8686–8698

    Article  CAS  PubMed  Google Scholar 

  57. Thomson S et al. (2005) Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65: 9455–9462

    Article  CAS  PubMed  Google Scholar 

  58. Hiscox S et al. (2006) Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer 118: 290–301

    Article  CAS  PubMed  Google Scholar 

  59. Carrozzino F et al. (2005) Inducible expression of Snail selectively increases paracellular ion permeability and differentially modulates tight junction proteins. Am J Physiol Cell Physiol 289: C1002–C1014

    Article  CAS  PubMed  Google Scholar 

  60. Aroeira LS et al. (2005) Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. Am J Kidney Dis 46: 938–948

    Article  CAS  PubMed  Google Scholar 

  61. Parsonage G et al. (2005) A stromal address code defined by fibroblasts. Trends Immunol 26: 150–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hogaboam CM et al. (1998) Novel roles for chemokines and fibroblasts in interstitial fibrosis. Kidney Int 54: 2152–2159

    Article  CAS  PubMed  Google Scholar 

  63. Strutz F et al. (2001) TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 59: 579–592

    Article  CAS  PubMed  Google Scholar 

  64. Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25: 695–705

    Article  CAS  PubMed  Google Scholar 

  65. Larue L and Bellacosa A (2005) Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3[prime] kinase/AKT pathways. Oncogene 24: 7443–7454

    Article  CAS  PubMed  Google Scholar 

  66. Malaney S and Daly RJ (2001) The ras signaling pathway in mammary tumorigenesis and metastasis. J Mammary Gland Biol Neoplasia 6: 101–113

    Article  CAS  PubMed  Google Scholar 

  67. Huber MA et al. (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–558

    Article  CAS  PubMed  Google Scholar 

  68. Bild AH et al. (2006) Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 6: 735–741

    Article  CAS  PubMed  Google Scholar 

  69. Massague J (2007) Sorting out breast-cancer gene signatures. N Engl J Med 356: 294–297

    Article  CAS  PubMed  Google Scholar 

  70. Chambard JC et al. (2007) ERK implication in cell cycle regulation. Biochim Biophys Acta 1773: 1299–1310

    Article  CAS  PubMed  Google Scholar 

  71. Giehl K (2005) Oncogenic Ras in tumour progression and metastasis. Biol Chem 386: 193–205

    CAS  PubMed  Google Scholar 

  72. Nottage M and Siu LL (2002) Rationale for Ras and raf-kinase as a target for cancer therapeutics. Curr Pharm Des 8: 2231–2242

    Article  CAS  PubMed  Google Scholar 

  73. Guerra E et al. (2003) Prognostic value of mutations in TP53 and RAS genes in breast cancer. Int J Biol Markers 18: 49–53

    Article  CAS  PubMed  Google Scholar 

  74. Kim D et al. (2005) Targeting the phosphatidylinositol-3 kinase/Akt pathway for the treatment of cancer. Curr Opin Investig Drugs 6: 1250–1258

    CAS  PubMed  Google Scholar 

  75. Milde-Langosch K et al. (2005) Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer. Br J Cancer 92: 2206–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gee JM et al. (2000) Biological and clinical associations of c-jun activation in human breast cancer. Int J Cancer 89: 177–186

    Article  CAS  PubMed  Google Scholar 

  77. Gee JM et al. (2001) Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 95: 247–254

    Article  CAS  PubMed  Google Scholar 

  78. Janes PW et al. (1994) Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 9: 3601–3608

    CAS  PubMed  Google Scholar 

  79. Nakopoulou L et al. (2005) Effect of different ERK2 protein localizations on prognosis of patients with invasive breast carcinoma. APMIS 113: 693–701

    Article  CAS  PubMed  Google Scholar 

  80. Janda E et al. (2002) Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156: 299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grunert S et al. (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4: 657–665

    Article  PubMed  CAS  Google Scholar 

  82. Shintani Y et al. (2006) Phosphoinositide-3 kinase-Rac1-c-Jun NH2-terminal kinase signaling mediates collagen I-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells. Mol Biol Cell 17: 2963–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zavadil J and Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774

    Article  CAS  PubMed  Google Scholar 

  84. Nawshad A et al. (2005) Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implications for embryogenesis and tumor metastasis. Cells Tissues Organs 179: 11–23

    Article  CAS  PubMed  Google Scholar 

  85. Lochter A et al. (1997) Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J Biol Chem 272: 5007–5015

    Article  CAS  PubMed  Google Scholar 

  86. Lochter A et al. (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139: 1861–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Radisky DC et al. (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436: 123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23: 912–923

    Article  CAS  PubMed  Google Scholar 

  89. Tibbles LA and Woodgett JR (1999) The stress-activated protein kinase pathways. Cell Mol Life Sci 55: 1230–1254

    Article  CAS  PubMed  Google Scholar 

  90. Scaltriti M and Baselga J (2006) The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12: 5268–5272

    Article  CAS  PubMed  Google Scholar 

  91. Tolg C et al. (2006) Rhamm−/− fibroblasts are defective in CD44-mediated ERK1,2 motogenic signaling, leading to defective skin wound repair. J Cell Biol 175: 1017–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu R et al. (2007) The prognostic role of gene signature from tumorigenic breast cancer cells. N Engl J Med 356: 217–226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina J Bissell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turley, E., Veiseh, M., Radisky, D. et al. Mechanisms of Disease: epithelial–mesenchymal transition—does cellular plasticity fuel neoplastic progression?. Nat Rev Clin Oncol 5, 280–290 (2008). https://doi.org/10.1038/ncponc1089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing