Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations

Abstract

Obesity is a disorder with a complex genetic etiology, and its epidemic is a worldwide problem. Although multiple genetic loci associated with body mass index, the most common measure of obesity, have been identified in European populations, few studies have focused on Asian populations. Here we report a genome-wide association study and replication studies with 62,245 east Asian subjects, which identified two new body mass index–associated loci in the CDKAL1 locus at 6p22 (rs2206734, P = 1.4 × 10−11) and the KLF9 locus at 9q21 (rs11142387, P = 1.3 × 10−9), as well as several previously reported loci (the SEC16B, BDNF, FTO, MC4R and GIPR loci, P < 5.0 × 10−8). We subsequently performed gene-gene interaction analyses and identified an interaction (P = 2.0 × 10−8) between a SNP in the KLF9 locus (rs11142387) and one in the MSTN (also known as GDF8) locus at 2q32 (rs13034723). These findings should provide useful insights into the etiology of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of the GWAS for BMI.
Figure 2: Gene-gene interactions between the KLF9 and MSTN loci.

Similar content being viewed by others

References

  1. Kopelman, P.G. Obesity as a medical problem. Nature 404, 635–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Maes, H.H., Neale, M.C. & Eaves, L.J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 27, 325–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Frayling, T.M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, Y.J. et al. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum. Mol. Genet. 17, 1803–1813 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chambers, J.C. et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat. Genet. 40, 716–718 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Loos, R.J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Willer, C.J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Meyre, D. et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat. Genet. 41, 157–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, X.G. et al. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am. J. Hum. Genet. 84, 418–423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho, Y.S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527–534 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deurenberg, P., Deurenberg-Yap, M. & Guricci, S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes. Rev. 3, 141–146 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura, Y. The BioBank Japan Project. Clin. Adv. Hematol. Oncol. 5, 696–697 (2007).

    PubMed  Google Scholar 

  15. Okada, Y. et al. Genome-wide association study for C-reactive protein levels identified pleiotropic associations in the IL6 locus. Hum. Mol. Genet. 20, 1224–1231 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Freedman, M.L. et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet. 36, 388–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wen, W. et al. Meta-analysis identifies common variants associated with body mass index in east Asians. Nat. Genet. Advance online publication (12 February 2012), doi:10.1038/ng.1086.

    Article  CAS  PubMed  Google Scholar 

  18. Zobel, D.P. et al. Variation in the gene encoding Kruppel-like factor 7 influences body fat: studies of 14,818 Danes. Eur. J. Endocrinol. 160, 603–609 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Hinney, A., Vogel, C.I. & Hebebrand, J. From monogenic to polygenic obesity: recent advances. Eur. Child Adolesc. Psychiatry 19, 297–310 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cordell, H.J. Detecting gene-gene interactions that underlie human diseases. Nat. Rev. Genet. 10, 392–404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winkler, C. et al. BMI at age 8 years is influenced by the type 2 diabetes susceptibility genes HHEX-IDE and CDKAL1. Diabetes 59, 2063–2067 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Andersson, E.A. et al. Type 2 diabetes risk alleles near ADCY5, CDKAL1 and HHEX-IDE are associated with reduced birthweight. Diabetologia 53, 1908–1916 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Steinthorsdottir, V. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39, 770–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Yamauchi, T. et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat. Genet. 42, 864–868 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pei, H., Yao, Y., Yang, Y., Liao, K. & Wu, J.R. Kruppel-like factor KLF9 regulates PPARγ transactivation at the middle stage of adipogenesis. Cell Death Differ. 18, 315–327 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Kadowaki, T. & Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Oishi, Y. et al. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 1, 27–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Elkasrawy, M.N. & Hamrick, M.W. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J. Musculoskelet. Neuronal Interact. 10, 56–63 (2010).

    CAS  PubMed  Google Scholar 

  30. Schuelke, M. et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682–2688 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Grade, C.V., Salerno, M.S., Schubert, F.R., Dietrich, S. & Alvares, L.E. An evolutionarily conserved Myostatin proximal promoter/enhancer confers basal levels of transcription and spatial specificity in vivo. Dev. Genes Evol. 219, 497–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Wada, K. et al. Validity of self-reported height and weight in a Japanese workplace population. Int. J. Obes. (Lond) 29, 1093–1099 (2005).

    Article  CAS  Google Scholar 

  33. Nakamura, K., Hoshino, Y., Kodama, K. & Yamamoto, M. Reliability of self-reported body height and weight of adult Japanese women. J. Biosoc. Sci. 31, 555–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  35. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Yamaguchi-Kabata, Y. et al. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am. J. Hum. Genet. 83, 445–456 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stranger, B.E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. W.H.O. Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363, 157–163 (2004).

Download references

Acknowledgements

We thank K. Tobe and M. Iwata at the First Department of Internal Medicine, Faculty of Medicine, Toyama University, H. Hirose at Health Center, Keio University School of Medicine and all the staff of the Laboratory for Endocrinology, Metabolism and Statistical Analysis at CGM, RIKEN for their assistance. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Y.O. and T. Tanaka designed the study and drafted the manuscript. N.H. and M.K. performed the genotyping. Y.O., H.O., A.T., N. Kumasaka and T. Tsunoda performed the statistical analyses. Y.O. and M.K. managed the clinical information. W.W., R.D., M.J.G., W.Z., N. Kato, J.-Y.W. and Q.L. managed replication study set 3. The GIANT consortium managed the association study in Europeans. S.M., K.Y., Y.N., N. Kamatani and T. Tanaka supervised the study.

Corresponding author

Correspondence to Yukinori Okada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of members is provided in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6, Supplementary Figures 1–5 and Supplementary Note. (PDF 593 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, Y., Kubo, M., Ohmiya, H. et al. Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. Nat Genet 44, 302–306 (2012). https://doi.org/10.1038/ng.1086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing