Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion

Abstract

The identification of subtype-specific translocations has revolutionized the diagnostics of sarcoma and has provided new insight into oncogenesis. We used RNA-seq to investigate samples from individuals diagnosed with small round cell tumors of bone, possibly Ewing sarcoma, but which lacked the canonical EWSR1-ETS translocation. A new fusion was observed between BCOR (encoding the BCL6 co-repressor) and CCNB3 (encoding the testis-specific cyclin B3) on the X chromosome. RNA-seq results were confirmed by RT-PCR and through cloning of the tumor-specific genomic translocation breakpoints. In total, 24 BCOR-CCNB3–positive tumors were identified among a series of 594 sarcoma cases. Gene profiling experiments indicated that BCOR-CCNB3–positive cases are biologically distinct from other sarcomas, particularly Ewing sarcoma. Finally, we show that CCNB3 immunohistochemistry is a powerful diagnostic marker for this subgroup of sarcoma and that overexpression of BCOR-CCNB3 or of truncated CCNB3 activates S phase in NIH3T3 cells. Thus, the intrachromosomal X-chromosome fusion described here represents a new subtype of bone sarcoma caused by a newly identified gene fusion mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA-seq identification of the BCOR-CCNB3 fusion.
Figure 2: Characterization of the BCOR-CCNB3 genomic rearrangement and demonstration of its recurrence in small round cell sarcomas.
Figure 3: BCOR-CCNB3–positive cases are distinct from other small round cell tumors and particularly from Ewing sarcoma.
Figure 4: Functional consequences of BCOR-CCNB3 expression.
Figure 5: Expression of CCNB3 across a series of tumors.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Delattre, O. et al. Gene fusion with an ETS domain caused by chromosome translocation in human tumors. Nature 359, 162–165 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Delattre, O. et al. The Ewing family of tumors: a subgroup of small round cell tumors defined by specific chimeric transcripts. N. Engl. J. Med. 331, 294–299 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Toomey, E.C., Schiffman, J.D. & Lessnick, S.L. Recent advances in the molecular pathogenesis of Ewing's sarcoma. Oncogene 29, 4504–4516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Szuhai, K. et al. The NFATc2 gene is involved in a novel cloned translocation in a Ewing sarcoma variant that couples its function in immunology to oncology. Clin. Cancer Res. 15, 2259–2268 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Broadhead, M.L., Clark, J.C., Myers, D.E. & Dass, C.R. The molecular pathogenesis of osteosarcoma: a review. Sarcoma 2011, 959248 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wilhelm, B.T. et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Maher, C.A. et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc. Natl. Acad. Sci. USA 106, 12353–12358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sboner, A. et al. FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol. 11, R104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peter, M., Gilbert, E. & Delattre, O. A multiplex real-time PCR assay for the detection of gene fusions observed in solid tumors. Lab. Invest. 81, 905–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Ng, T.L. et al. Ewing sarcoma with novel translocation t(2;16) producing an in-frame fusion of FUS and FEV. J. Mol. Diagn. 9, 459–463 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huynh, K.D., Fischle, W., Verdin, E. & Bardwell, V.J. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 14, 1810–1823 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gallant, P. & Nigg, E.A. Identification of a novel vertebrate cyclin: cyclin B3 shares properties with both A- and B-type cyclins. EMBO J. 13, 595–605 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Armengol, G. et al. Recurrent gains of 1q, 8 and 12 in the Ewing family of tumours by comparative genomic hybridization. Br. J. Cancer 75, 1403–1409 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gearhart, M.D., Corcoran, C.M., Wamstad, J.A. & Bardwell, V.J. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Mol. Cell. Biol. 26, 6880–6889 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan, Z. et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat. Cell Biol. 11, 1002–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ng, D. et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat. Genet. 36, 411–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Yamamoto, Y. et al. BCOR as a novel fusion partner of retinoic acid receptor α in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 116, 4274–4283 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Grossmann, V. et al. Whole genome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 118, 6153–6163 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen, T.B. et al. Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin. J. Biol. Chem. 277, 41960–41969 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Kawamura-Saito, M. et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35; q13) translocation. Hum. Mol. Genet. 15, 2125–2137 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. R: A Language and Environment for Statistical Computing. (eds. Venables, W.N. & Smith, D.M.) (R Development Core Team, Vienna, 2005).

  23. Culhane, A.C., Thioulouse, J., Perriere, G. & Higgins, D.G. MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics 21, 2789–2790 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide experssion profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, W. et al. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

  27. Dauphinot, L. et al. Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2 and c-Myc expression. Oncogene 20, 3258–3265 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Chanock for fruitful discussions and critical reading of the manuscript. We are indebted to V. Raynal, P. Legoix-Ne, A. Nicolas, D. Gentien, S. Lair, A. Lermine and E. Barillot for critical technical help. We thank the following individuals for contributing cases and paraffin blocks or for supplying clinical information: J. Champigneulle, A. Croue, P. Dechelotte, J.M. Guinebretière, C. Jeanne-Pasquier, A. Moreau, J.M. Picquenot, D. Ranchère-Vince, X. Sastre-Garau, P. Terrier, M.C. Vacher-Lavenue, V. Verkaere and L. Guillou. We thank E. Louis, S. Thoraval and T. Scarcez from the Life Science Company for help in applying SOLiD technology. We also thank N. Bretschneider, C. Gugenmus, M. Scherf and M. Seifert from the Genomatix company for the analysis of data. This work was supported by grants from the Ligue Nationale Contre le Cancer (Equipe Labellisée and Carte d'ldentité des Tumeurs program), the Région Île de France, the Institut National du Cancer (INCa; 2008-044, 0627 and ZP09-027-EPI), the European Union (European Embryonal Tumors pipeline) and the following associations: Courir pour Mathieu, Dans les Pas du Géant, Olivier Chape, Les Bagouzamanon and Les Amis de Claire.

Author information

Authors and Affiliations

Authors

Contributions

S.B. performed the next-generation sequencing analysis. G.P., S.R. and S.B. characterized the initial case and screened the individuals with sarcoma. C.L. and F.T. performed all the bioinformatics analyses. J.-M.C. performed pathological review of the cases and CCNB3 immunohistochemistery experiments. S.C.-G. contributed the analysis of clinical files and, with V.P. performed the cloning and cell cycle analyses for BCOR-CCNB3 and ΔCCNB3 cDNA. G.P., F.T. and O.D. planned and supervised the work, and all authors contributed to writing the manuscript.

Corresponding author

Correspondence to Olivier Delattre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1–6 (PDF 2159 kb)

Supplementary Tables

Supplementary Tables 1–10 (XLS 5206 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierron, G., Tirode, F., Lucchesi, C. et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 44, 461–466 (2012). https://doi.org/10.1038/ng.1107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1107

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer