Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape

Subjects

Abstract

Transposable element (TE)-derived sequences comprise half of the human genome and DNA methylome and are presumed to be densely methylated and inactive. Examination of genome-wide DNA methylation status within 928 TE subfamilies in human embryonic and adult tissues identified unexpected tissue-specific and subfamily-specific hypomethylation signatures. Genes proximal to tissue-specific hypomethylated TE sequences were enriched for functions important for the relevant tissue type, and their expression correlated strongly with hypomethylation within the TEs. When hypomethylated, these TE sequences gained tissue-specific enhancer marks, including monomethylation of histone H3 at lysine 4 (H3K4me1) and occupancy by p300, and a majority exhibited enhancer activity in reporter gene assays. Many such TEs also harbored binding sites for transcription factors that are important for tissue-specific functions and showed evidence of evolutionary selection. These data suggest that sequences derived from TEs may be responsible for wiring tissue type–specific regulatory networks and may have acquired tissue-specific epigenetic regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clustering of TE families on the basis of their DNA methylation profiles shows tissue specificity.
Figure 2: Tissue-specific enhancer signatures of LTR77 and LFSINE.
Figure 3: Tissue-specific hypomethylated TEs correlate with gene expression.
Figure 4: Correlation between cell type–specific enhancer marks, binding of transcription factors and sequence motifs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fichte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).

    Article  CAS  Google Scholar 

  4. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Lynch, V.J., Leclerc, R.D., May, G. & Wagner, G.P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, T. et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl. Acad. Sci. USA 104, 18613–18618 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xie, D. et al. Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res. 20, 804–815 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McClintock, B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197–216 (1956).

    Article  CAS  PubMed  Google Scholar 

  9. McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36, 344–355 (1950).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jordan, I.K., Rogozin, I.B., Glazko, G.V. & Koonin, E.V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19, 68–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Polavarapu, N., Marino-Ramirez, L., Landsman, D., McDonald, J.F. & Jordan, I.K. Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics 9, 226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Morgan, H.D., Sutherland, H.G., Martin, D.I. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Slotkin, R.K. & Martienssen, R. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8, 272–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Harris, R.A. et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat. Biotechnol. 28, 1097–1105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maunakea, A.K. et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466, 253–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Day, D.S., Luquette, L.J., Park, P.J. & Kharchenko, P.V. Estimating enrichment of repetitive elements from high-throughput sequence data. Genome Biol. 11, R69 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung, D. et al. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data. PLoS Comput. Biol. 7, e1002111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, J., Huda, A., Lunyak, V.V. & Jordan, I.K. A Gibbs sampling strategy applied to the mapping of ambiguous short-sequence tags. Bioinformatics 26, 2501–2508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmid, C.D. & Bucher, P. MER41 repeat sequences contain inducible STAT1 binding sites. PLoS ONE 5, e11425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Samuelson, L.C., Wiebauer, K., Snow, C.M. & Meisler, M.H. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol. Cell. Biol. 10, 2513–2520 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Medstrand, P., Landry, J.R. & Mager, D.L. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J. Biol. Chem. 276, 1896–1903 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Dunn, C.A., Medstrand, P. & Mager, D.L. An endogenous retroviral long terminal repeat is the dominant promoter for human β1,3-galactosyltransferase 5 in the colon. Proc. Natl. Acad. Sci. USA 100, 12841–12846 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cohen, C.J., Lock, W.M. & Mager, D.L. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448, 105–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Yan, Z. & Banerjee, R. Redox remodeling as an immunoregulatory strategy. Biochemistry 49, 1059–1066 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Angelini, G. et al. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc. Natl. Acad. Sci. USA 99, 1491–1496 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stadler, M.B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Roussa, E., von Bohlen und Halbach, O. & Krieglstein, K. TGF-β in dopamine neuron development, maintenance and neuroprotection. Adv. Exp. Med. Biol. 651, 81–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wegner, M. & Stolt, C.C. From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci. 28, 583–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  33. Rosenbloom, K.R. et al. ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res. 40, D912–D917 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Doolittle, W.F. & Sapienza, C. Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603 (1980).

    Article  CAS  PubMed  Google Scholar 

  35. Orgel, L.E. & Crick, F.H. Selfish DNA: the ultimate parasite. Nature 284, 604–607 (1980).

    Article  CAS  PubMed  Google Scholar 

  36. Ostertag, E.M. & Kazazian, H.H. Jr. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35, 501–538 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Martínez-Garay, I. et al. Intronic L1 insertion and F268S, novel mutations in RPS6KA3 (RSK2) causing Coffin-Lowry syndrome. Clin. Genet. 64, 491–496 (2003).

    Article  PubMed  Google Scholar 

  38. Claverie-Martin, F., Gonzalez-Acosta, H., Flores, C., Anton-Gamero, M. & Garcia-Nieto, V. De novo insertion of an Alu sequence in the coding region of the CLCN5 gene results in Dent's disease. Hum. Genet. 113, 480–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Fazzari, M.J. & Greally, J.M. Epigenomics: beyond CpG islands. Nat. Rev. Genet. 5, 446–455 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kidwell, M.G. & Lisch, D. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94, 7704–7711 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Batzer, M.A. & Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Brosius, J. Retroposons—seeds of evolution. Science 251, 753 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Britten, R.J. Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol. Phylogenet. Evol. 5, 13–17 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Miller, W.J., McDonald, J.F., Nouaud, D. & Anxolabehere, D. Molecular domestication—more than a sporadic episode in evolution. Genetica 107, 197–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. van de Lagemaat, L.N., Landry, J.R., Mager, D.L. & Medstrand, P. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19, 530–536 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Lowe, C.B., Bejerano, G. & Haussler, D. Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc. Natl. Acad. Sci. USA (in the press) (2007).

  47. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmidt, D. et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148, 335–348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bejerano, G. et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441, 87–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Sasaki, T. et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc. Natl. Acad. Sci. USA 105, 4220–4225 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Beck, C.R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iskow, R.C. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141, 1253–1261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ward, M.C. et al. Latent regulatory potential of human-specific repetitive elements. Mol. Cell 49, 262–272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chuong, E.B., Rumi, M.A., Soares, M.J. & Baker, J.C. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 45, 325–329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Romanov, S.R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O'Geen, H., Echipare, L. & Farnham, P.J. Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol. Biol. 791, 265–286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grunau, C., Clark, S.J. & Rosenthal, A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29, E65–5 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rohde, C., Zhang, Y., Reinhardt, R. & Jeltsch, A. BISMA—fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 11, 230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the many collaborators at the Reference Epigenome Mapping Centers (REMCs), the Epigenome Data Analysis and Coordination Center and the NCBI who have generated and processed data that were used in this project. We acknowledge the dedicated system administrators at the Washington University Center for Genome Sciences and Systems Biology who have provided an excellent computing environment. We thank the UCSC Genome Browser bioinformatics team for providing processed ENCODE data. We acknowledge support from the US National Institutes of Health (NIH) Roadmap Epigenomics Program, sponsored by the National Institute on Drug Abuse (NIDA) and the National Institute of Environmental Health Sciences (NIEHS). J.F.C., T.W., P.J.F. and M.H. are supported by US NIH grant 5U01ES017154. B.Z. and X.Z. are supported by the NIDA R25 program DA027995. K.L.L. and C.L.M. are supported by US NIH grants P01CA095616 and P01CA142536. T.W. is supported in part by the March of Dimes Foundation, the Edward Mallinckrodt Jr. Foundation, US NIH grant P50CA134254 and a generous start-up package from the Department of Genetics at the Washington University School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

J.F.C. and T.W. designed the study. C.L.M., K.L.L., P.G., M.S., T.D.T., T.K. and A.W. collected samples. C.H., H.O., P.J.F., A.J.M., A.T., B.K., S.C., R.M., M.H. and M.A.M. performed sequencing assays. M.X., B.Z., R.F.L., D.L., X.Z., H.J.L., P.A.F.M. and T.W. performed data analysis. C.H., X.X. and M.X. performed bisulfite validation and reporter gene assays. M.X., J.F.C. and T.W. wrote the manuscript. All authors discussed the results and contributed to writing the manuscript.

Corresponding authors

Correspondence to Joseph F Costello or Ting Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–17, Supplementary Tables 1–6 (PDF 3214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, M., Hong, C., Zhang, B. et al. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet 45, 836–841 (2013). https://doi.org/10.1038/ng.2649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing