Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia

Abstract

Genome-wide association studies (GWAS) of chronic lymphocytic leukemia (CLL) have shown that common genetic variation contributes to the heritable risk of CLL. To identify additional CLL susceptibility loci, we conducted a GWAS and performed a meta-analysis with a published GWAS totaling 1,739 individuals with CLL (cases) and 5,199 controls with validation in an additional 1,144 cases and 3,151 controls. A combined analysis identified new susceptibility loci mapping to 3q26.2 (rs10936599, P = 1.74 × 10−9), 4q26 (rs6858698, P = 3.07 × 10−9), 6q25.2 (IPCEF1, rs2236256, P = 1.50 × 10−10) and 7q31.33 (POT1, rs17246404, P = 3.40 × 10−8). Additionally, we identified a promising association at 5p15.33 (CLPTM1L, rs31490, P = 1.72 × 10−7) and validated recently reported putative associations at 5p15.33 (TERT, rs10069690, P = 1.12 × 10−10) and 8q22.3 (rs2511714, P = 2.90 × 10−9). These findings provide further insights into the genetic and biological basis of inherited genetic susceptibility to CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plots of ORs for five variants associated with CLL.
Figure 2: Regional plots of association results, recombination rates and chromatin state segmentation tracks for five CLL risk loci.

Similar content being viewed by others

References

  1. Stevenson, F.K. & Caligaris-Cappio, F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 103, 4389–4395 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Goldin, L.R., Bjorkholm, M., Kristinsson, S.Y., Turesson, I. & Landgren, O. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin's lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica 94, 647–653 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Di Bernardo, M.C. et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat. Genet. 40, 1204–1210 (2008).

    CAS  PubMed  Google Scholar 

  4. Crowther-Swanepoel, D. et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat. Genet. 42, 132–136 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Slager, S.L. et al. Common variation at 6p21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. Blood 120, 843–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berndt, S.I. et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat. Genet. 45, 868–876 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Houlston, R.S. et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat. Genet. 42, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chubb, D. et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat. Genet. 45, 1221–1225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones, A.M. et al. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut 61, 248–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Codd, V. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 45, 422–427 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verma-Gaur, J., Hauser, J. & Grundstrom, T. Negative feedback regulation of antigen receptors through calmodulin inhibition of E2A. J. Immunol. 188, 6175–6183 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Ramsay, A.J. et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat. Genet. 45, 526–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Petersen, G.M. et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 42, 224–228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barrett, J.H. et al. Genome-wide association study identifies three new melanoma susceptibility loci. Nat. Genet. 43, 1108–1113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stacey, S.N. et al. New common variants affecting susceptibility to basal cell carcinoma. Nat. Genet. 41, 909–914 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y. et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet. 40, 1407–1409 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rothman, N. et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat. Genet. 42, 978–984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bojesen, S.E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 45, 371–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haiman, C.A. et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nat. Genet. 43, 1210–1214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karlsson, R. et al. Investigation of six testicular germ cell tumor susceptibility genes suggests a parent-of-origin effect in SPRY4. Hum. Mol. Genet. 22, 3373–3380 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Hamblin, T.J., Davis, Z., Gardiner, A., Oscier, D.G. & Stevenson, F.K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999).

    CAS  PubMed  Google Scholar 

  23. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Bernardo, M.C., Broderick, P., Catovsky, D. & Houlston, R.S. Common genetic variation contributes significantly to the risk of developing chronic lymphocytic leukemia. Haematologica 98, e23–e24 (2013).

    Article  PubMed  Google Scholar 

  25. Swerdlow, S.H. et al. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues (IARC Press, Lyon, France, 2008).

  26. Catovsky, D. et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet 370, 230–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Power, C. & Elliott, J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int. J. Epidemiol. 35, 34–41 (2006).

    Article  PubMed  Google Scholar 

  28. Penegar, S. et al. National study of colorectal cancer genetics. Br. J. Cancer 97, 1305–1309 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eisen, T., Matakidou, A. & Houlston, R. Identification of low penetrance alleles for lung cancer: the GEnetic Lung CAncer Predisposition Study (GELCAPS). BMC Cancer 8, 244 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Smedby, K.E. et al. Ultraviolet radiation exposure and risk of malignant lymphomas. J. Natl. Cancer Inst. 97, 199–209 (2005).

    Article  PubMed  Google Scholar 

  31. van Dongen, J.J. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17, 2257–2317 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. van Krieken, J.H. et al. Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 21, 201–206 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nordfjäll, K., Osterman, P., Melander, O., Nilsson, P. & Roos, G. hTERT (–1327)T/C polymorphism is not associated with age-related telomere attrition in peripheral blood. Biochem. Biophys. Res. Commun. 358, 215–218 (2007).

    Article  PubMed  Google Scholar 

  35. Mansouri, L. et al. Short telomere length is associated with NOTCH1/SF3B1/TP53 aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients. Am. J. Hematol. 88, 647–651 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clayton, D.G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet. 37, 1243–1246 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Petitti, D. Meta-analysis, Decision Analysis, and Cost-effectiveness Analysis (Oxford University Press, 1994).

  39. Higgins, J.P. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article  PubMed  Google Scholar 

  40. Myers, S., Bottolo, L., Freeman, C., McVean, G. & Donnelly, P. A fine-scale map of recombination rates and hotspots across the human genome. Science 310, 321–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Boyle, A.P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cooper, G.M. et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901–913 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, T.P. et al. Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics 26, 2474–2476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Leukaemia and Lymphoma Research provided principal funding for the study (LRF05001 and LRF06002). We acknowledge support from Cancer Research UK (C1298/A8362 supported by the Bobby Moore Fund) and the Arbib Fund. We also acknowledge National Health Service funding to the Royal Marsden/Institute of Cancer Research; National Institute for Health Research Biomedical Research Centre. The study made use of genotyping data on the 1958 Birth Cohort; a full list of the investigators who contributed to the generation of these data is available at http://www.wtccc.org.uk/. We thank L. Padyukov (Karolinska Institutet) and the Epidemiological Investigation of Rheumatoid Arthritis (EIRA) group for providing control samples from the Swedish population for the Swedish replication study. We are grateful to all clinicians for their involvement in patient ascertainment. This study makes use of data generated by the Wellcome Trust Case-Control Consortium 1 and 2. A full list of the investigators who contributed to the generation of the data is available at http://www.wtccc.org.uk/. We are grateful to all investigators and all the patients and individuals for their participation. We also thank the clinicians, other hospital staff and study staff that contributed to the blood sample and data collection for this study.

Author information

Authors and Affiliations

Authors

Contributions

R.S.H. obtained financial support, designed the project and provided overall project management. R.S.H. drafted the manuscript. H.E.S. performed project management and supervised genotyping. M.C.D.B. performed bioinformatic and statistical analyses. G.P.S. and A.H. performed genotyping. Y.W. and M.C.D.B. performed imputation analysis. D.C. and R.S.H. established the International CLL Linkage Consortium (ICLLLC). C.D. and D.C. performed recruitment of samples. In Sweden, L.M. performed sample collection and prepared DNA; R.R. performed collection of all cases and G.J. and K.E.S. performed sample collection in the Scandinavian Lymphoma Etiology (SCALE) study; and G.R. performed telomere analysis. In Newcastle, J.M.A. and D.J.A. conceived of the NCLLC; J.M.A. obtained financial support, supervised laboratory management and oversaw genotyping of cases with NCLLC; N.J.S. performed sample management of cases; A.G.H. developed the Newcastle Haematology Biobank, incorporating NCLLC; and T.M.-F., G.H.J., G.S., R.J.H., A.R.P., D.J.A., J.R.B., G.P., C.P. and C.F. developed protocols for recruitment of individuals with CLL and sample acquisition and performed sample collection of cases. In Leicester, M.J.S.D. performed overall management, collection and processing of samples; and S.J. and A.M. performed DNA extractions and IGVH mutation assays. All authors contributed to the final paper.

Corresponding author

Correspondence to Richard S Houlston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7 and Supplementary Figures 1–5 (PDF 2934 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speedy, H., Di Bernardo, M., Sava, G. et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet 46, 56–60 (2014). https://doi.org/10.1038/ng.2843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing