Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal, late-onset neurodegenerative disease primarily affecting motor neurons. A unifying feature of many proteins associated with ALS, including TDP-43 and ataxin-2, is that they localize to stress granules. Unexpectedly, we found that genes that modulate stress granules are strong modifiers of TDP-43 toxicity in Saccharomyces cerevisiae and Drosophila melanogaster. eIF2α phosphorylation is upregulated by TDP-43 toxicity in flies, and TDP-43 interacts with a central stress granule component, polyA-binding protein (PABP). In human ALS spinal cord neurons, PABP accumulates abnormally, suggesting that prolonged stress granule dysfunction may contribute to pathogenesis. We investigated the efficacy of a small molecule inhibitor of eIF2α phosphorylation in ALS models. Treatment with this inhibitor mitigated TDP-43 toxicity in flies and mammalian neurons. These findings indicate that the dysfunction induced by prolonged stress granule formation might contribute directly to ALS and that compounds that mitigate this process may represent a novel therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A yeast plasmid overexpression screen highlights the role of stress granules in TDP-43 toxicity.
Figure 2: Genes that affect stress granule formation modulate TDP-43 toxicity.
Figure 3: The interaction between TDP-43 and ataxin-2 is mediated through the polyA-binding protein motif of ataxin-2.
Figure 4: PABP is required for TDP-43 toxicity.
Figure 5: PABPC1 is mislocalized in motor neurons from the tissue of humans with ALS.
Figure 6: PERK inhibitor treatment rescues TDP-43 toxicity in Drosophila and primary rat neurons.

Similar content being viewed by others

References

  1. Boillée, S., Vande Velde, C. & Cleveland, D.W. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39–59 (2006).

    PubMed  Google Scholar 

  2. Cleveland, D.W. & Rothstein, J.D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Al-Chalabi, A. et al. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol. 124, 339–352 (2012).

    CAS  PubMed  Google Scholar 

  4. Couthouis, J. et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 2899–2911 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Couthouis, J. et al. A yeast functional screen predicts new candidate ALS disease genes. Proc. Natl. Acad. Sci. USA 108, 20881–20890 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, H.J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. King, O.D., Gitler, A.D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61–80 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Warraich, S.T., Yang, S., Nicholson, G.A. & Blair, I.P. TDP-43: a DNA and RNA binding protein with roles in neurodegenerative diseases. Int. J. Biochem. Cell Biol. 42, 1606–1609 (2010).

    CAS  PubMed  Google Scholar 

  9. Aulas, A., Stabile, S. & Vande Velde, C. Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol. Neurodegener. 7, 54 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bentmann, E. et al. Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J. Biol. Chem. 287, 23079–23094 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Parker, S.J. et al. Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochem. Int. 60, 415–424 (2012).

    CAS  PubMed  Google Scholar 

  12. Dewey, C.M. et al. TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol. Cell Biol. 31, 1098–1108 (2011).

    CAS  PubMed  Google Scholar 

  13. Thomas, M.G., Loschi, M., Desbats, M.A. & Boccaccio, G.L. RNA granules: the good, the bad and the ugly. Cell Signal. 23, 324–334 (2011).

    CAS  PubMed  Google Scholar 

  14. Hart, M.P. & Gitler, A.D. ALS-associated ataxin 2 polyQ expansions enhance stress-induced caspase 3 activation and increase TDP-43 pathological modifications. J. Neurosci. 32, 9133–9142 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y.R., King, O.D., Shorter, J. & Gitler, A.D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu-Yesucevitz, L. et al. TAR DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS ONE 5, e13250 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Wolozin, B. Regulated protein aggregation: stress granules and neurodegeneration. Mol. Neurodegener. 7, 56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bentmann, E., Haass, C. & Dormann, D. Stress granules in neurodegeneration—lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J. 280, 4348–4370 (2013).

    CAS  PubMed  Google Scholar 

  19. Ramaswami, M., Taylor, J.P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    CAS  PubMed  Google Scholar 

  20. Thomas, M., Alegre-Abarrategui, J. & Wade-Martins, R. RNA dysfunction and aggrephagy at the centre of an amyotrophic lateral sclerosis/frontotemporal dementia disease continuum. Brain 136, 1345–1360 (2013).

    PubMed  Google Scholar 

  21. Moreno, J.A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013).

    PubMed  Google Scholar 

  22. Moreno, J.A. et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485, 507–511 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Auluck, P.K., Chan, H.Y., Trojanowski, J.Q., Lee, V.M. & Bonini, N.M. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865–868 (2002).

    CAS  PubMed  Google Scholar 

  24. Cooper, A.A. et al. α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324–328 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Elden, A.C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gitler, A.D. et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308–315 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Outeiro, T.F. & Lindquist, S. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Treusch, S. et al. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast. Science 334, 1241–1245 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson, B.S., McCaffery, J.M., Lindquist, S. & Gitler, A.D. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc. Natl. Acad. Sci. USA 105, 6439–6444 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Johnson, B.S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis–linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Armakola, M., Hart, M.P. & Gitler, A.D. TDP-43 toxicity in yeast. Methods 53, 238–245 (2011).

    CAS  PubMed  Google Scholar 

  32. Hu, X.H. et al. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175, 1479–1487 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, Z. et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 9, e1000614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jain, S. & Parker, R. The discovery and analysis of P bodies. Adv. Exp. Med. Biol. 768, 23–43 (2013).

    CAS  PubMed  Google Scholar 

  35. Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D.W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ling, S.C., Polymenidou, M. & Cleveland, D.W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tazen, S. et al. Amyotrophic lateral sclerosis and spinocerebellar ataxia type 2 in a family with full CAG repeat expansions of ATXN2. JAMA Neurol. doi:10.1001/jamaneurol.2013.443 (19 August 2013).

  38. Zoll, W.L., Horton, L.E., Komar, A.A., Hensold, J.O. & Merrick, W.C. Characterization of mammalian eIF2A and identification of the yeast homolog. J. Biol. Chem. 277, 37079–37087 (2002).

    CAS  PubMed  Google Scholar 

  39. Dewey, C.M. et al. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 1462, 16–25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson, P. & Kedersha, N. Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones 7, 213–221 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brand, S. & Bourbon, H.M. The developmentally-regulated Drosophila gene rox8 encodes an RRM-type RNA binding protein structurally related to human TIA-1–type nucleolysins. Nucleic Acids Res. 21, 3699–3704 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dalton, L.E., Healey, E., Irving, J. & Marciniak, S.J. Phosphoproteins in stress-induced disease. Prog. Mol. Biol. Transl. Sci. 106, 189–221 (2012).

    CAS  PubMed  Google Scholar 

  43. Khong, A. & Jan, E. Modulation of stress granules and P bodies during dicistrovirus infection. J. Virol. 85, 1439–1451 (2011).

    CAS  PubMed  Google Scholar 

  44. Kimball, S.R., Horetsky, R.L., Ron, D., Jefferson, L.S. & Harding, H.P. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 284, C273–C284 (2003).

    CAS  PubMed  Google Scholar 

  45. Kedersha, N. et al. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell Biol. 151, 1257–1268 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruggieri, A. et al. Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection. Cell Host Microbe 12, 71–85 (2012).

    CAS  PubMed  Google Scholar 

  47. Nonhoff, U. et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol. Biol. Cell 18, 1385–1396 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Swisher, K.D. & Parker, R. Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae. PLoS ONE 5, e10006 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Kozlov, G., Menade, M., Rosenauer, A., Nguyen, L. & Gehring, K. Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein. J. Mol. Biol. 397, 397–407 (2010).

    CAS  PubMed  Google Scholar 

  50. Chowdhury, A., Raju, K.K., Kalurupalle, S. & Tharun, S. Both Sm-domain and C-terminal extension of Lsm1 are important for the RNA-binding activity of the Lsm1–7-Pat1 complex. RNA 18, 936–944 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Satterfield, T.F. & Pallanck, L.J. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum. Mol. Genet. 15, 2523–2532 (2006).

    CAS  PubMed  Google Scholar 

  52. Buratti, E. & Baralle, F.E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

    CAS  PubMed  Google Scholar 

  53. Axten, J.M. et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 55, 7193–7207 (2012).

    CAS  PubMed  Google Scholar 

  54. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    CAS  PubMed  Google Scholar 

  55. Barmada, S.J. et al. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 30, 639–649 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zuberi, K. et al. GeneMANIA prediction server 2013 update. Nucleic Acids Res. 41, W115–W122 (2013).

    PubMed  PubMed Central  Google Scholar 

  57. Hofmann, S., Cherkasova, V., Bankhead, P., Bukau, B. & Stoecklin, G. Translation suppression promotes stress granule formation and cell survival in response to cold shock. Mol. Biol. Cell 23, 3786–3800 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Buchan, J.R., Yoon, J.H. & Parker, R. Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J. Cell Sci. 124, 228–239 (2011).

    CAS  PubMed  Google Scholar 

  59. Hekmat-Scafe, D.S., Dang, K.N. & Tanouye, M.A. Seizure suppression by gain-of-function escargot mutations. Genetics 169, 1477–1493 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  61. Pfeiffer, B.D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Feany, M.B. & Bender, W.W. A Drosophila model of Parkinson's disease. Nature 404, 394–398 (2000).

    CAS  PubMed  Google Scholar 

  63. Arrasate, M. & Finkbeiner, S. Automated microscope system for determining factors that predict neuronal fate. Proc. Natl. Acad. Sci. USA 102, 3840–3845 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X. Teng and Y. Zhu for technical assistance and W. Motley, A. Berson and other laboratory members for insightful comments. This work was funded by grants from the Howard Hughes Medical Institute (N.M.B.), grant R01NS073660 from the US National Institutes of Health (NIH; A.D.G. and N.M.B.), NIH Director's New Innovator Award DP2OD004417 (A.D.G.) and US NIH grant R01NS065317 (A.D.G.), the Robert Packard Center for ALS and the Williams H. Adams Foundation (S.F.), and US NIH grants AG10124, AG32953, AG17586 and NS53488 (J.Q.T. and V.M.-Y.L.). A.D.G. and S.F. are supported by a grant from Target ALS. A.R.R. is supported by a BrightFocus Alzheimer's disease research grant.

Author information

Authors and Affiliations

Authors

Contributions

H.-J.K., A.R.R., E.S.L., L.M. and A.D.G. conceived, designed and performed experiments, performed statistical analysis and analyzed data. R.A.W. performed experiments. J.Q.T. and V.M.-Y.L. contributed reagents and materials and provided experimental input. S.F., A.D.G. and N.M.B. conceived and designed experiments, analyzed data and supervised the research. H.-J.K. and N.M.B., with input from A.R.R. and A.D.G., wrote the manuscript.

Corresponding author

Correspondence to Nancy M Bonini.

Ethics declarations

Competing interests

A.D.G. is an inventor on patents and patent applications for the gene hits from the yeast genetic screen that have been licensed to FoldRx.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 5710 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Raphael, A., LaDow, E. et al. Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet 46, 152–160 (2014). https://doi.org/10.1038/ng.2853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing