Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The genomic landscape of juvenile myelomonocytic leukemia

A Corrigendum to this article was published on 01 January 2016

This article has been updated

Abstract

Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 or CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and could therefore be candidates for experimental therapies. In addition, few molecular pathways aside from the RAS-MAPK pathway have been identified that could serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia to expand knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, splicing, Polycomb repressive complex 2 (PRC2) and transcription. Notably, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations identified by exome sequencing.
Figure 2: Circos plot of samples with at least two mutations.
Figure 3: Mutations in SH2B3 decrease expression of LNK.
Figure 4: Event-free and overall survival of patients stratified by number of somatic alterations.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Change history

  • 07 December 2015

    In the version of this article initially published, two patients were stated on page 5 to have been excluded owing to insufficient follow-up data. These patients were included in the final analysis, but two additional patients were excluded owing to the presence of Noonan syndrome. On page 6, monosomy 7 was incorrectly listed as a significant factor in event-free and overall survival, but this factor was no longer significant after removing the patients with Noonan syndrome. The Online Methods incorrectly referred to "Data from patient AAML0122" instead of data from patients enrolled on AAML0122. The errors have been corrected in the HTML and PDF versions of the rticle.

References

  1. Chang, T.Y., Dvorak, C.C. & Loh, M.L. Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia. Blood 124, 2487–2497 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Dvorak, C.C. & Loh, M.L. Juvenile myelomonocytic leukemia: molecular pathogenesis informs current approaches to therapy and hematopoietic cell transplantation. Front. Pediatr. 2, 25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matsuda, K. et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leukemia with specific RAS mutations. Blood 109, 5477–5480 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Matsuda, K. et al. Long-term survival after nonintensive chemotherapy in some juvenile myelomonocytic leukemia patients with CBL mutations, and the possible presence of healthy persons with the mutations. Blood 115, 5429–5431 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Bresolin, S. et al. Gene expression–based classification as an independent predictor of clinical outcome in juvenile myelomonocytic leukemia. J. Clin. Oncol. 28, 1919–1927 (2010).

    Article  PubMed  Google Scholar 

  6. Flotho, C. et al. Genotype-phenotype correlation in cases of juvenile myelomonocytic leukemia with clonal RAS mutations. Blood 111, 966–967, author reply 967–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Side, L. et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N. Engl. J. Med. 336, 1713–1720 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Flotho, C. et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 13, 32–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Loh, M.L. et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103, 2325–2331 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Loh, M.L. et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114, 1859–1863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakaguchi, H. et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat. Genet. 45, 937–941 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Stieglitz, E. et al. Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood 125, 516–524 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niemeyer, C.M. et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat. Genet. 42, 794–800 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stephens, K. et al. Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism of NF1 inactivation in myeloid malignancies. Blood 108, 1684–1689 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flex, E. et al. Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum. Mol. Genet. 23, 4315–4327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Graham, S.M. et al. TC21 and Ras share indistinguishable transforming and differentiating activities. Oncogene 18, 2107–2116 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Patmore, D.M. et al. In vivo regulation of TGF-β by R-Ras2 revealed through loss of the RasGAP protein NF1. Cancer Res. 72, 5317–5327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chan, A.M., Miki, T., Meyers, K.A. & Aaronson, S.A. A human oncogene of the RAS superfamily unmasked by expression cDNA cloning. Proc. Natl. Acad. Sci. USA 91, 7558–7562 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Locatelli, F. & Niemeyer, C.M. How I treat juvenile myelomonocytic leukemia (JMML). Blood 125, 1083–1090 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Tinschert, S. et al. Segmental neurofibromatosis is caused by somatic mutation of the neurofibromatosis type 1 (NF1) gene. Eur. J. Hum. Genet. 8, 455–459 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Side, L.E. et al. Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood 92, 267–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Kotecha, N. et al. Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 14, 335–343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudd, C.E. Lnk adaptor: novel negative regulator of B cell lymphopoiesis. Sci. STKE 2001, pe1 (2001).

    CAS  PubMed  Google Scholar 

  25. Oh, S.T. et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116, 988–992 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lasho, T.L., Pardanani, A. & Tefferi, A. LNK mutations in JAK2 mutation–negative erythrocytosis. N. Engl. J. Med. 363, 1189–1190 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Hurtado, C. et al. LNK can also be mutated outside PH and SH2 domains in myeloproliferative neoplasms with and without V617FJAK2 mutation. Leuk. Res. 35, 1537–1539 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Perez-Garcia, A. et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood 122, 2425–2432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McMullin, M.F., Wu, C., Percy, M.J. & Tong, W. A nonsynonymous LNK polymorphism associated with idiopathic erythrocytosis. Am. J. Hematol. 86, 962–964 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gambacorti-Passerini, C.B. et al. Recurrent ETNK1 mutations in atypical chronic myeloid leukemia. Blood 125, 499–503 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Z. et al. Increased c-Jun expression and reduced GATA2 expression promote aberrant monocytic differentiation induced by activating PTPN11 mutants. Mol. Cell. Biol. 29, 4376–4393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pasquet, M. et al. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood 121, 822–829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kazenwadel, J. et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood 119, 1283–1291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsu, A.P. et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118, 2653–2655 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hahn, C.N. et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 43, 1012–1017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ostergaard, P. et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43, 929–931 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Stieglitz, E. et al. Mutations in GATA2 are rare in juvenile myelomonocytic leukemia. Blood 123, 1426–1427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fasan, A. et al. GATA2 mutations are frequent in intermediate-risk karyotype AML with biallelic CEBPA mutations and are associated with favorable prognosis. Leukemia 27, 482–485 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Papaemmanuil, E. et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122, 3616–3627, quiz 3699 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bauer, D.E., Loh, M.L., Bhagat, G., Cantor, A.B. & Kung, A.L. Potential role of RUNX1 in the pathogenesis of juvenile myelomonocytic leukemia (JMML). Blood 122, 45 (2013).

    Article  Google Scholar 

  41. Osato, M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23, 4284–4296 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Sano, H. et al. Wiskott-Aldrich syndrome with unusual clinical features similar to juvenile myelomonocytic leukemia. Int. J. Hematol. 96, 279–283 (2012).

    Article  PubMed  Google Scholar 

  43. Yoshimi, A. et al. Wiskott-Aldrich syndrome presenting with a clinical picture mimicking juvenile myelomonocytic leukaemia. Pediatr. Blood Cancer 60, 836–841 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Albert, M.H. et al. X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood 115, 3231–3238 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Pérez, B. et al. Genetic typing of CBL, ASXL1, RUNX1, TET2 and JAK2 in juvenile myelomonocytic leukaemia reveals a genetic profile distinct from chronic myelomonocytic leukaemia. Br. J. Haematol. 151, 460–468 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Sugimoto, Y. et al. Spectrum of molecular defects in juvenile myelomonocytic leukaemia includes ASXL1 mutations. Br. J. Haematol. 150, 83–87 (2010).

    CAS  PubMed  Google Scholar 

  47. Kar, S.A. et al. Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia. Haematologica 98, 107–113 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ribeiro, A.F. et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 119, 5824–5831 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Ley, T.J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Madan, V. et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat. Commun. 6, 6042 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Hirabayashi, S. et al. Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML. Blood 119, e96–e99 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Takita, J. et al. Novel splicing-factor mutations in juvenile myelomonocytic leukemia. Leukemia 26, 1879–1881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jankowska, A.M. et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 118, 3932–3941 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Furlan, I. et al. Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood 113, 2867–2868 (2009).

    Article  PubMed  Google Scholar 

  55. Russler-Germain, D.A. et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25, 442–454 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Archambeault, S. et al. Development of an allele-specific minimal residual disease assay for patients with juvenile myelomonocytic leukemia. Blood 111, 1124–1127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kothari, A., Hulbert, M.L., Cottrell, C.E. & Nguyen, T.T. Aggressive congenital juvenile myelomonocytic leukemia associated with somatic KRAS p.G13D mutation and concurrent germline IGF1R duplication. Leuk. Lymphoma 4 56, 1175–1178 (2015).

    Article  PubMed  Google Scholar 

  58. Lee, M.L. et al. Juvenile myelomonocytic leukemia in a premature neonate mimicking neonatal sepsis. Pediatr. Neonatol. 10.1016/j.pedneo.2013.06.009 (25 October 2013).

  59. Greaves, M. & Maley, C.C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chang, T. et al. Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J. Clin. Invest. 123, 335–339 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Lyubynska, N. et al. A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice. Sci. Transl. Med. 3, 76ra27 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chan, R.J., Cooper, T., Kratz, C.P., Weiss, B. & Loh, M.L. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk. Res. 33, 355–362 (2009).

    Article  PubMed  Google Scholar 

  63. Stieglitz, E. et al. Phase II/III trial of a pre-transplant farnesyl transferase inhibitor in juvenile myelomonocytic leukemia: a report from the Children's Oncology Group. Pediatr. Blood Cancer 62, 629–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chapman, M.A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Venkatraman, E.S. & Olshen, A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23, 657–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 39, e118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Forbes, S.A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Triche, T.J. Jr., Weisenberger, D.J., Van Den Berg, D., Laird, P.W. & Siegmund, K.D. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 41, e90 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  73. Dulak, A.M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Kaplan, E.L. & Meier, P. Nonparametric-estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).

    Article  Google Scholar 

  77. Cox, D.R. Regression models and life-tables. J. R. Stat. Soc., B 34, 187–220 (1972).

    Google Scholar 

  78. Gray, R.J. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann. Stat. 16, 1141–1154 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families for participating in this research, without whom this work would not have been possible. In addition, A. Ikeda, E. Raetz, N. Bunin and J. Finkelstein all assisted in this research by providing invaluable patient samples.

This work was supported by the Carlos Slim Foundation in Mexico as part of the Slim Initiative for Genomic Medicine; the St. Baldrick's Foundation (E.S.); Alex's Lemonade Stand Foundation (E.S.); the Leukemia and Lymphoma Society (grants 6059-09 and 6466-15) (M.L.L.) and a Leukemia and Lymphoma Society Scholar award (K.S.)); US National Institutes of Health, National Cancer Institute grants T32CA128583 (E.S.) and R01CA173085 (M.L.L.), National Cancer Institute Cancer Center Support grant 5P30CA082103, Children's Oncology Group (COG) Statistics and Data Center grant 1U10CA180899 (T.A.A.), COG Chair's Grant 5U10CA098543 (T.A.A.) and US National Institutes of Health grant P30CA82103 (A.B.O.); the Frank A. Campini Foundation (E.S. and M.L.L.); Hyundai Hope on Wheels (M.L.L.); and a University of California San Francisco Dean's Commitment to the Center for Advanced Technologies facility.

Author information

Authors and Affiliations

Authors

Contributions

E.S., L.C.G., T.M., E.E., A.Y., K.B. and S.L.A. performed the experiments. E.S., A.N.T.-W., Y.-D.W., T.M., M.R., A.B.O., Y.L., J.M., R.B.G. and T.A.A. performed data analysis. G.A., M.B., P.A.B., B.C., T.C., G.V.D., P.D.E., M.N.F., R.K.G., R.J.H., J.H., C.H., Y.L.L., Y.H.M., D.H.M., P.M., E.R.N., P.A.R., R.J.S., K.C.S., C.M.T. and J.A.T. contributed reagents, materials and analysis tools. E.S., A.N.T.-W. and M.L.L. wrote the first draft of the manuscript. T.Y.C. performed statistical analysis. J.F.C., C.S., G.G., T.A.G., T.R.G., K.S. and M.L.L. supervised research. S.S. and S.R.O. managed the project. All coauthors contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Elliot Stieglitz or Mignon L Loh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Tables 1–13. (PDF 7321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stieglitz, E., Taylor-Weiner, A., Chang, T. et al. The genomic landscape of juvenile myelomonocytic leukemia. Nat Genet 47, 1326–1333 (2015). https://doi.org/10.1038/ng.3400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3400

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research