Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer

An Erratum to this article was published on 27 May 2016

This article has been updated

Abstract

Liver cancer, which is most often associated with virus infection, is prevalent worldwide, and its underlying etiology and genomic structure are heterogeneous. Here we provide a whole-genome landscape of somatic alterations in 300 liver cancers from Japanese individuals. Our comprehensive analysis identified point mutations, structural variations (STVs), and virus integrations, in noncoding and coding regions. We discovered mutational signatures related to liver carcinogenesis and recurrently mutated coding and noncoding regions, such as long intergenic noncoding RNA genes (NEAT1 and MALAT1), promoters, CTCF-binding sites, and regulatory regions. STV analysis found a significant association with replication timing and identified known (CDKN2A, CCND1, APC, and TERT) and new (ASH1L, NCOR1, and MACROD2) cancer-related genes that were recurrently affected by STVs, leading to altered expression. These results emphasize the value of whole-genome sequencing analysis in discovering cancer driver mutations and understanding comprehensive molecular profiles of liver cancer, especially with regard to STVs and noncoding mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of mutations and recurrently mutated features in 300 liver cancer whole genomes.
Figure 2: Genome-wide mutational signatures of 300 liver cancers.
Figure 3: Mutations in annotated noncoding regions.
Figure 4: Genome-wide search for mutational clusters in noncoding regions.
Figure 5: Analysis of structural variations and their effect on gene expression.
Figure 6: Clinical implications and association with prognosis.

Similar content being viewed by others

Change history

  • 18 April 2016

    In the version of this article initially published online, the mutation category plots in the top panel of Figure 1 were not correctly aligned with the corresponding genes. In addition, the labels for tumor types on the left were not correctly aligned with individual samples. The errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. El-Serag, H.B. & Rudolph, K.L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132, 2557–2576 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Li, M. et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat. Genet. 43, 828–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Totoki, Y. et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 43, 464–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Fujimoto, A. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kan, Z. et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 23, 1422–1433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Totoki, Y. et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 46, 1267–1273 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Huang, J. et al. Exome sequencing of hepatitis B virus–associated hepatocellular carcinoma. Nat. Genet. 44, 1117–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Sung, W.K. et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Jiang, Z. et al. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res. 22, 593–601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jhunjhunwala, S. et al. Diverse modes of genomic alteration in hepatocellular carcinoma. Genome Biol. 15, 436 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Schulze, K. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 47, 505–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46, 1160–1165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nault, J.C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun. 4, 2218 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. George, J. et al. Comprehensive genomic profiles of small cell lung cancer. Nature 524, 47–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Northcott, P.A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stephens, P.J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fujimoto, A. et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat. Commun. 6, 6120 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Tomasetti, C., Vogelstein, B. & Parmigiani, G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl. Acad. Sci. USA 110, 1999–2004 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  22. Woo, Y.H. & Li, W.H. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat. Commun. 3, 1004 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alexandrov, L.B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyakawa, Y. & Mizokami, M. Classifying hepatitis B virus genotypes. Intervirology 46, 329–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Bill, C.A. & Summers, J. Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proc. Natl. Acad. Sci. USA 101, 11135–11140 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nault, J.C. et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47, 1187–1193 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Ceol, C.J. et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471, 513–517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Q. et al. Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism. Proc. Natl. Acad. Sci. USA 109, 14568–14573 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Si-Tayeb, K., Lemaigre, F.P. & Duncan, S.A. Organogenesis and development of the liver. Dev. Cell 18, 175–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Harrow, J. et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Walker, S.R. et al. STAT5 outcompetes STAT3 to regulate the expression of the oncogenic transcriptional modulator BCL6. Mol. Cell. Biol. 33, 2879–2890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wong, C.M. et al. Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma. Hepatology 45, 1129–1138 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Xu, C. et al. Low expression of TFPI-2 associated with poor survival outcome in patients with breast cancer. BMC Cancer 13, 118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hirose, T. et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell 25, 169–183 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li, Y. et al. NEAT expression is associated with tumor recurrence and unfavorable prognosis in colorectal cancer. Oncotarget 6, 27641–27650 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Tsai, W.C. et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49, 1571–1582 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Heidari, N. et al. Genome-wide map of regulatory interactions in the human genome. Genome Res. 24, 1905–1917 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De, S. & Michor, F. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat. Biotechnol. 29, 1103–1108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ni, S. et al. Down expression of LRP1B promotes cell migration via RhoA/Cdc42 pathway and actin cytoskeleton remodeling in renal cell cancer. Cancer Sci. 104, 817–825 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pitkänen, E. et al. Frequent L1 retrotranspositions originating from TTC28 in colorectal cancer. Oncotarget 5, 853–859 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  45. Bignell, G.R. et al. Signatures of mutation and selection in the cancer genome. Nature 463, 893–898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jankevicius, G. et al. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat. Struct. Mol. Biol. 20, 508–514 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoon, H.G. et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 22, 1336–1346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weischenfeldt, J., Symmons, O., Spitz, F. & Korbel, J.O. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14, 125–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Kaneda, A. et al. Lysyl oxidase is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in human gastric cancers. Cancer Res. 64, 6410–6415 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Hofree, M., Shen, J.P., Carter, H., Gross, A. & Ideker, T. Network-based stratification of tumor mutations. Nat. Methods 10, 1108–1115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Song, S., Wheeler, L.J. & Mathews, C.K. Deoxyribonucleotide pool imbalance stimulates deletions in HeLa cell mitochondrial DNA. J. Biol. Chem. 278, 43893–43896 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Guo, T., Chen, T., Gu, C., Li, B. & Xu, C. Genetic and molecular analyses reveal G6PC as a key element connecting glucose metabolism and cell cycle control in ovarian cancer. Tumour Biol. 36, 7649–7658 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Chakravarty, D. et al. The oestrogen receptor α–regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat. Commun. 5, 5383 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Choudhry, H. et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 34, 4482–4490 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Kawaguchi, T. et al. SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies. Proc. Natl. Acad. Sci. USA 112, 4304–4309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

  57. Ha, G. et al. Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer. Genome Res. 22, 1995–2007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shiraishi, Y. et al. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers. PLoS One 9, e114263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  60. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  61. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  62. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J. & Stratton, M.R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vanunu, O., Magger, O., Ruppin, E., Shlomi, T. & Sharan, R. Associating genes and protein complexes with disease via network propagation. PLoS Comput. Biol. 6, e1000641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The supercomputing resource 'SHIROKANE' was provided by the Human Genome Center at The University of Tokyo. This work was supported in part by RIKEN President's Fund 2011, a Grant-in-Aid for the RIKEN CGM and IMS, a Grant-in-Aid for Scientific Research on Innovative Areas from JSPS grants (25134717, 25670375, 23114001, and 15H04814), the Princess Takamatsu Cancer Research Fund, the Takeda Science Foundation, the Practical Research for Innovative Cancer Control from the Japan Agency for Medical Research and Development, CREST from the Japan Science and Technology Agency, and National Cancer Center Research and Development Funds (26-A-5); the National Cancer Center Biobank is supported by the National Cancer Center Research and Development Fund, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Study design: H. Nakagawa and T. Shibata. Data acquisition and management: H. Tanaka, K.A.B., T.A., K.N., K.M., A.S.-O., A.O., T. Shibuya, F.H., Y.A., S.O., T.U., M. Kubo, S. Miyano, and H. Nakagawa. Data analysis: A.F., M.F., Y.T., T.T., M. Kato, Y.S., H. Tanaka, C.P.W., H. Nakamura, N. Hama, G.N., S.Y., H.U., and K.T. Molecular analysis: M.F. and H. Taniguchi. Sample acquisition and clinical data collection: Y.K., M.U., K.G., S.A., S. Hayami, T.N., H. Aikata, K.A., H. Ojima, N. Hiraoka, T.O., S. Marubashi, T.Y., S. Hirano, M.Y., H. Ohdan, K.S., O.I., H.Y., and K.C. Manuscript writing: A.F., M.F., Y.T., T.T., M. Kato, C.P.W., K.A.B., T. Shibata, and H. Nakagawa. Project supervision: H. Nakagawa, T. Shibata, H. Aburatani, and S. Miyano.

Corresponding authors

Correspondence to Tatsuhiro Shibata or Hidewaki Nakagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–28 (PDF 30330 kb)

Supplementary Tables 1–32

Supplementary Tables 1–32. (XLSX 6382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimoto, A., Furuta, M., Totoki, Y. et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet 48, 500–509 (2016). https://doi.org/10.1038/ng.3547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3547

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research