Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The genomic landscape of core-binding factor acute myeloid leukemias

Abstract

Acute myeloid leukemia (AML) comprises a heterogeneous group of leukemias frequently defined by recurrent cytogenetic abnormalities, including rearrangements involving the core-binding factor (CBF) transcriptional complex. To better understand the genomic landscape of CBF-AMLs, we analyzed both pediatric (n = 87) and adult (n = 78) samples, including cases with RUNX1-RUNX1T1 (n = 85) or CBFB-MYH11 (n = 80) rearrangements, by whole-genome or whole-exome sequencing. In addition to known mutations in the Ras pathway, we identified recurrent stabilizing mutations in CCND2, suggesting a previously unappreciated cooperating pathway in CBF-AML. Outside of signaling alterations, RUNX1-RUNX1T1 and CBFB-MYH11 AMLs demonstrated remarkably different spectra of cooperating mutations, as RUNX1-RUNX1T1 cases harbored recurrent mutations in DHX15 and ZBTB7A, as well as an enrichment of mutations in epigenetic regulators, including ASXL2 and the cohesin complex. This detailed analysis provides insights into the pathogenesis and development of CBF-AML, while highlighting dramatic differences in the landscapes of cooperating mutations for these related AML subtypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutational landscape of CBF-AML.
Figure 2: Recurrent mutations in CCND2 and MGA.
Figure 3: DHX15 is recurrently mutated in RUNX1-RUNX1T1 AML.
Figure 4: Mutant allele frequency at diagnosis and relapse in CBF-AMLs.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Downing, J.R. The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br. J. Haematol. 106, 296–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Castilla, L.H. et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat. Genet. 23, 144–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Higuchi, M. et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 1, 63–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Yuan, Y. et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc. Natl. Acad. Sci. USA 98, 10398–10403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zuber, J. et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 23, 877–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bacher, U., Haferlach, T., Schoch, C., Kern, W. & Schnittger, S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107, 3847–3853 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Kuchenbauer, F. et al. Identification of additional cytogenetic and molecular genetic abnormalities in acute myeloid leukaemia with t(8;21)/AML1-ETO. Br. J. Haematol. 134, 616–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Valk, P.J. et al. Second hit mutations in the RTK/RAS signaling pathway in acute myeloid leukemia with inv(16). Haematologica 89, 106 (2004).

    CAS  PubMed  Google Scholar 

  9. Schessl, C. et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J. Clin. Invest. 115, 2159–2168 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nanri, T., Matsuno, N., Kawakita, T., Mitsuya, H. & Asou, N. Imatinib mesylate for refractory acute myeloblastic leukemia harboring inv(16) and a C-KIT exon 8 mutation. Leukemia 19, 1673–1675 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Nanri, T. et al. Mutations in the receptor tyrosine kinase pathway are associated with clinical outcome in patients with acute myeloblastic leukemia harboring t(8;21)(q22;q22). Leukemia 19, 1361–1366 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bowen, D.T. et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 106, 2113–2119 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Care, R.S. et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br. J. Haematol. 121, 775–777 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Goemans, B.F. et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 19, 1536–1542 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Boissel, N. et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia 20, 965–970 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Paschka, P. et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG). Blood 121, 170–177 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Kühn, M.W. et al. High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations. Blood 119, e67–e75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He, J. et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood 127, 3004–3014 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duployez, N. et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 127, 2451–2459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olsson, L. et al. The genetic landscape of paediatric de novo acute myeloid leukaemia as defined by single nucleotide polymorphism array and exon sequencing of 100 candidate genes. Br. J. Haematol. 174, 292–301 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Farrar, J.E. et al. Genomic profiling of pediatric acute myeloid leukemia reveals a changing mutational landscape from disease diagnosis to relapse. Cancer Res. 76, 2197–2205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lavallée, V.P. et al. RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature. Blood 127, 2498–2501 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Sood, R. et al. Somatic mutational landscape of AML with inv(16) or t(8;21) identifies patterns of clonal evolution in relapse leukemia. Leukemia 30, 501–504 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Alexandrov, L.B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  26. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krauth, M.T. et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia 28, 1449–1458 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Haferlach, C. et al. AML with CBFB-MYH11 rearrangement demonstrate RAS pathway alterations in 92% of all cases including a high frequency of NF1 deletions. Leukemia 24, 1065–1069 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Hurlin, P.J., Steingrìmsson, E., Copeland, N.G., Jenkins, N.A. & Eisenman, R.N. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif. EMBO J. 18, 7019–7028 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

  31. Papaemmanuil, E. et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 46, 116–125 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Edelmann, J. et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood 120, 4783–4794 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Landau, D.A. et al. Mutations driving CLL and their evolution in progression and relapse. Nature 526, 525–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, L. et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat. Genet. 47, 1061–1066 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Bouchard, C. et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J. 18, 5321–5333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, B.B. et al. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood 119, 3132–3141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kida, A., Kakihana, K., Kotani, S., Kurosu, T. & Miura, O. Glycogen synthase kinase-3β and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene 26, 6630–6640 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Mirzaa, G.M. et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly–polymicrogyria–polydactyly–hydrocephalus syndrome. Nat. Genet. 46, 510–515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dolnik, A. et al. Commonly altered genomic regions in acute myeloid leukemia are enriched for somatic mutations involved in chromatin remodeling and splicing. Blood 120, e83–e92 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Arenas, J.E. & Abelson, J.N. Prp43: an RNA helicase–like factor involved in spliceosome disassembly. Proc. Natl. Acad. Sci. USA 94, 11798–11802 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Combs, D.J., Nagel, R.J., Ares, M. Jr. & Stevens, S.W. Prp43p is a DEAH-box spliceosome disassembly factor essential for ribosome biogenesis. Mol. Cell. Biol. 26, 523–534 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martin, A., Schneider, S. & Schwer, B. Prp43 is an essential RNA-dependent ATPase required for release of lariat–intron from the spliceosome. J. Biol. Chem. 277, 17743–17750 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Mayas, R.M., Maita, H., Semlow, D.R. & Staley, J.P. Spliceosome discards intermediates via the DEAH box ATPase Prp43p. Proc. Natl. Acad. Sci. USA 107, 10020–10025 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cai, X. et al. Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell 17, 165–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Huether, R. et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat. Commun. 5, 3630 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Micol, J.B. et al. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 124, 1445–1449 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abdel-Wahab, O. et al. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J. Exp. Med. 210, 2641–2659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Inoue, D. et al. Myelodysplastic syndromes are induced by histone methylation–altering ASXL1 mutations. J. Clin. Invest. 123, 4627–4640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herz, H.M. et al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev. 26, 2604–2620 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu, D. et al. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33, 4745–4754 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, M.G. et al. Demethylation of H3K27 regulates Polycomb recruitment and H2A ubiquitination. Science 318, 447–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Mansour, M.R. et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tie, F., Banerjee, R., Conrad, P.A., Scacheri, P.C. & Harte, P.J. Histone demethylase UTX and chromatin remodeler BRM bind directly to CBP and modulate acetylation of histone H3 lysine 27. Mol. Cell. Biol. 32, 2323–2334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, C. et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25, 652–665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bose, T. & Gerton, J.L. Cohesinopathies, gene expression, and chromatin organization. J. Cell Biol. 189, 201–210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kon, A. et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat. Genet. 45, 1232–1237 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Welch, J.S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deardorff, M.A. et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am. J. Hum. Genet. 80, 485–494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hartmann, L. et al. ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. Nat. Commun. 7, 11733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bullinger, L. et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood 110, 1291–1300 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Ross, M.E. et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104, 3679–3687 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Yan, M. et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat. Med. 12, 945–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, J. et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, X. et al. CONSERTING: integrating copy-number analysis with structural-variation detection. Nat. Methods 12, 527–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Koboldt, D.C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Olshen, A.B., Venkatraman, E.S., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

    Article  PubMed  Google Scholar 

  71. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Walbott, H. et al. Prp43p contains a processive helicase structural architecture with a specific regulatory domain. EMBO J. 29, 2194–2204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu, P., Duong, D.M. & Peng, J. Systematical optimization of reverse-phase chromatography for shotgun proteomics. J. Proteome Res. 8, 3944–3950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou, J.Y. et al. Improved LC-MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. J. Proteome Res. 9, 5698–5704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chao, J.R. et al. Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452, 98–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Ritchie, M.E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mootha, V.K. et al. PGC-1α–responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J. & Stratton, M.R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the patients and their parents from the St. Jude Children's Research Hospital (USA) and the adult patients and their families from the German-Austrian AML Study Group (AMLSG). We thank the Tissue Resources Laboratory, the Flow Cytometry and Cell Sorting Core, and the Clinical Applications of Core Technology Laboratories of the Hartwell Center for Bioinformatics and Biotechnology of St. Jude Children's Research Hospital. This work was funded by the St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project, the American Lebanese and Syrian Associated Charities of St. Jude Children's Research Hospital and grants from the US National Institutes of Health (P30 CA021765 and K08 HL116605 (J.M.K.)). C.G.M. is a Pew Scholar in Biomedical Sciences and a St. Baldrick's Scholar. J.M.K. holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund. This study was supported in part by grants 01GI9981 and 01KG0605 from the German Bundesministerium für Bildung und Forschung (BMBF), grant 111911 from the Deutsche Krebshilfe and grant DO 704/3-1 from the Deutsche Forschungsgemeinschaft (DFG). K.D., H.D. and L.B. are supported by the Collaborative Research Center SFB 1074 funded by the DFG. L.B. is a Heisenberg Professor of the DFG (BU 1339/8-1).

Author information

Authors and Affiliations

Authors

Contributions

Z.J.F., A.L.G., J.C., I.R., J.-R.C., A.K.A., J.D., L. Dong, Z.C., R.H. and E.P. contributed to the design of the study and conducted experiments. X. Chen, Y. Liu, G.S., J.M., M.P.W., G.W., M.E., M.R., C.Q., Y. Li, J.W., E.H., H.M., K.B., B.V., D.Y., J.N., J.E., S.S., R.S.F., L.L.F., L. Ding, E.R.M., R.K.W. and J.Z. contributed to the preparation and analysis of the sequencing data. X. Cao and S.B.P. provided statistical support. P.P., R.F.S., L.B., H.D., K.D., C.-H.P. and J.E.R. provided clinical samples and data. Z.J.F., A.L.G. and J.M.K. wrote the manuscript. R.K.W., T.A.G., C.G.M., L.B., J.Z., J.M.K. and J.R.D. contributed to study design and oversaw the study.

Corresponding authors

Correspondence to Lars Bullinger, Jinghui Zhang, Jeffery M Klco or James R Downing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–24 and Supplementary Note. (PDF 28706 kb)

Supplementary Table 1

Clinicopathological information of 165 CBF-AML samples. (XLSX 22 kb)

Supplementary Table 2

Coding-region SNVs per case of CBF-AML. (XLSX 18 kb)

Supplementary Table 3

Coverage data for WGS cohort. (XLSX 11 kb)

Supplementary Table 4

Coverage data for WES cohort. (XLSX 31 kb)

Supplementary Table 5

Validated WGS sequence mutations for the 17 pediatric CBF-AML discovery cases. (XLSX 78 kb)

Supplementary Table 6

Validated whole-exome sequencing (WES) mutations for recurrency cohort. (XLSX 227 kb)

Supplementary Table 7

Recurrent somatic mutations in discovery and recurrency cohorts. (XLSX 114 kb)

Supplementary Table 8

Discovery cohort CNAs identified by WGS. (XLSX 12 kb)

Supplementary Table 9

Validated structural variants for the 17 pediatric CBF-AML discovery cases. (XLSX 31 kb)

Supplementary Table 10

Rank-ordered list of genes differentially expressed in DHX15 knockdown cells and their enrichment in the Reactome mRNA splicing gene set. (XLSX 13 kb)

Supplementary Table 11

Rank-ordered list of genes differentially expressed in DHX15 knockdown cells and their enrichment in the KEGG ribosome gene set. (XLSX 12 kb)

Supplementary Table 12

GSEA results after DHX15 knockdown. (XLSX 11 kb)

Supplementary Table 13

Spectral counts (SCs) of proteins identified in pulldown experiments with wild-type (Wt) or R222G (Mut) DHX15. (XLSX 61 kb)

Supplementary Table 14

RNA–seq RUNX1-RUNX1T1 upregulated genes. (XLSX 41 kb)

Supplementary Table 15

RNA–seq RUNX1-RUNX1T1 downregulated genes. (XLSX 43 kb)

Supplementary Table 16

GSEA gene list. (XLSX 14 kb)

Supplementary Table 17

Copy number analysis of de novo–relapse pair. (XLSX 56 kb)

Supplementary Table 18

Deep sequencing read counts in diagnosis, germline and relapse trios. (XLSX 47 kb)

Supplementary Table 19

Oligonucleotides used in this study. (XLSX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faber, Z., Chen, X., Gedman, A. et al. The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 48, 1551–1556 (2016). https://doi.org/10.1038/ng.3709

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing