Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs

Abstract

Antimalarial drugs impose strong selective pressure on Plasmodium falciparum parasites and leave signatures of selection in the parasite genome1,2; screening for genes under selection may suggest potential drug or immune targets3. Genome-wide association studies (GWAS) of parasite traits have been hampered by the lack of high-throughput genotyping methods, inadequate knowledge of parasite population history and time-consuming adaptations of parasites to in vitro culture. Here we report the first Plasmodium GWAS, which included 189 culture-adapted P. falciparum parasites genotyped using a custom-built Affymetrix molecular inversion probe 3K malaria panel array with a coverage of 1 SNP per 7 kb. Population structure, variation in recombination rate and loci under recent positive selection were detected. Parasite half-maximum inhibitory concentrations for seven antimalarial drugs were obtained and used in GWAS to identify genes associated with drug responses. This study provides valuable tools and insight into the P. falciparum genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Population structure and principal component analysis (PCA) of Plasmodium falciparum parasite populations.
Figure 2: Loci subject to positive selection in P. falciparum populations from Africa, Asia and America.
Figure 3: In vitro parasite responses (IC50) to seven antimalarial drugs.
Figure 4: Genome-wide scan for SNPs associated with responses to antimalarial drugs in the Asian population.

Similar content being viewed by others

References

  1. Wootton, J.C. et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418, 320–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Roper, C. et al. Intercontinental spread of pyrimethamine-resistant malaria. Science 305, 1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Mu, J. et al. Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome. Nat. Genet. 39, 126–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Zalis, M.G., Pang, L., Silveira, M.S., Milhous, W.K. & Wirth, D.F. Characterization of Plasmodium falciparum isolated from the Amazon region of Brazil: evidence for quinine resistance. Am. J. Trop. Med. Hyg. 58, 630–637 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Dondorp, A.M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wongsrichanalai, C. & Meshnick, S.R. Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia-Thailand border. Emerg. Infect. Dis. 14, 716–719 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Noedl, H. et al. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Hayton, K. & Su, X.-z. Drug resistance and genetic mapping in Plasmodium falciparum. Curr. Genet. 54, 223–239 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Hardenbol, P. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat. Biotechnol. 21, 673–678 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Mu, J. et al. Recombination hotspots and population structure in Plasmodium falciparum. PLoS Biol. 3, e335 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sabeti, P.C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Sabeti, P.C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Voight, B.F., Kudaravalli, S., Wen, X. & Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pickrell, J.K. et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 19, 826–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Escalante, A.A., Lal, A.A. & Ayala, F.J. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149, 189–202 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Winter, G. et al. SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J. Exp. Med. 201, 1853–1863 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, S., Mu, J., Jiang, H. & Su, X.-z. Effects of Plasmodium falciparum mixed infections on in vitro antimalarial drug tests and genotyping. Am. J. Trop. Med. Hyg. 79, 178–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Brockman, A. et al. Plasmodium falciparum antimalarial drug susceptibility on the north-western border of Thailand during five years of extensive use of artesunate-mefloquine. Trans. R. Soc. Trop. Med. Hyg. 94, 537–544 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Basco, L.K. & Le Bras, J. In vitro activity of artemisinin derivatives against African isolates and clones of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 49, 301–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fidock, D.A. et al. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6, 861–871 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferdig, M.T. et al. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol. 52, 985–997 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Sidhu, A.B., Valderramos, S.G. & Fidock, D.A. Mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol. Microbiol. 57, 913–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Cowman, A.F., Galatis, D. & Thompson, J.K. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc. Natl. Acad. Sci. USA 91, 1143–1147 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dharia, N.V. et al. Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biol. 10, R21 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Su, X.-z., Kirkman, L.A., Fujioka, H. & Wellems, T.E. Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Cell 91, 593–603 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Mu, J. et al. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol. Microbiol. 49, 977–989 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, H. et al. Genome-wide compensatory changes accompany drug- selected mutations in the Plasmodium falciparum crt gene. PLoS One 3, e2484 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Raj, D.K. et al. Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PFMRP) alters its fitness and transport of antimalarial drugs and glutathione. J. Biol. Chem. 284, 7687–7696 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Division of Intramural Research, NIAID, NIH (USA), funds from the Canadian Institute of Health Research #11284 and #200183, the US National Academies Keck Genome Initiative, and the Human Frontiers in Science Program #RGP54/2006 for P.A. K.C. and N.J.W. are supported by the Wellcome Trust. S.L. was supported by the 973 National Basic Research Program of China, #2007CB513103. We also thank J. Sattabongkot for help in parasite shipping, J. Dunn and L. Zhang for assistance in parasite culture and NIAID intramural editor B.R. Marshall for assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianbing Mu, Philip Awadalla or Xin-zhuan Su.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 and Supplementary Tables 1–6 (PDF 1491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, J., Myers, R., Jiang, H. et al. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat Genet 42, 268–271 (2010). https://doi.org/10.1038/ng.528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing