Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FOXA1 is a key determinant of estrogen receptor function and endocrine response

Abstract

Estrogen receptor-α (ER) is the key feature of most breast cancers and binding of ER to the genome correlates with expression of the Forkhead protein FOXA1 (also called HNF3α). Here we show that FOXA1 is a key determinant that can influence differential interactions between ER and chromatin. Almost all ER-chromatin interactions and gene expression changes depended on the presence of FOXA1 and FOXA1 influenced genome-wide chromatin accessibility. Furthermore, we found that CTCF was an upstream negative regulator of FOXA1-chromatin interactions. In estrogen-responsive breast cancer cells, the dependency on FOXA1 for tamoxifen-ER activity was absolute; in tamoxifen-resistant cells, ER binding was independent of ligand but depended on FOXA1. Expression of FOXA1 in non-breast cancer cells can alter ER binding and function. As such, FOXA1 is a major determinant of estrogen-ER activity and endocrine response in breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential binding of FOXA1 and ER overlaps in a cell context–dependent manner.
Figure 2: Binding of ER to chromatin and transcriptional activity requires FOXA1.
Figure 3: Tamoxifen induces similar ER binding events to estrogen in a FOXA1-dependent manner.
Figure 4: FOXA1 expression in U20S-ER osteosarcoma cancer cells renders ER functional.
Figure 5: FOXA1 is required for maintaining chromatin structure.
Figure 6: Binding events that are shared between ER and FOXA1 are exclusively independent of CTCF, and CTCF can repress the binding and activity of FOXA1.

Similar content being viewed by others

References

  1. Ali, S. & Coombes, R.C. Endocrine-responsive breast cancer and strategies for combating resistance. Nat. Rev. Cancer 2, 101–112 (2002).

    Article  Google Scholar 

  2. Clarke, R., Leonessa, F., Welch, J.N. & Skaar, T.C. Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacol. Rev. 53, 25–71 (2001).

    CAS  PubMed  Google Scholar 

  3. Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  4. Deblois, G. & Giguere, V. Nuclear receptor location analyses in mammalian genomes: from gene regulation to regulatory networks. Mol. Endocrinol. 22, 1999–2011 (2008).

    Article  CAS  Google Scholar 

  5. Fullwood, M.J. et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  Google Scholar 

  6. Carroll, J.S. et al. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38, 1289–1297 (2006).

    Article  CAS  Google Scholar 

  7. Lin, C.Y. et al. Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet. 3, e87 (2007).

    Article  Google Scholar 

  8. Welboren, W.J. et al. ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J. 28, 1418–1428 (2009).

    Article  CAS  Google Scholar 

  9. Laganière, J. et al. Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc. Natl. Acad. Sci. USA 102, 11651–11656 (2005).

    Article  Google Scholar 

  10. Carroll, J.S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  Google Scholar 

  11. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958–970 (2008).

    Article  CAS  Google Scholar 

  12. Cirillo, L.A. et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17, 244–254 (1998).

    Article  CAS  Google Scholar 

  13. Cirillo, L.A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  Google Scholar 

  14. Badve, S. et al. FOXA1 expression in breast cancer–correlation with luminal subtype A and survival. Clin. Cancer Res. 13, 4415–4421 (2007).

    Article  CAS  Google Scholar 

  15. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  16. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  Google Scholar 

  17. Lacroix, M. & Leclercq, G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res. Treat. 83, 249–289 (2004).

    Article  CAS  Google Scholar 

  18. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  Google Scholar 

  19. Ross-Innes, C.S. et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev. 24, 171–182 (2010).

    Article  CAS  Google Scholar 

  20. Jordan, V.C. Tamoxifen: a most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2, 205–213 (2003).

    Article  CAS  Google Scholar 

  21. Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    Article  CAS  Google Scholar 

  22. Frasor, J. et al. Selective estrogen receptor modulators: discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells. Cancer Res. 64, 1522–1533 (2004).

    Article  CAS  Google Scholar 

  23. Knowlden, J.M. et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144, 1032–1044 (2003).

    Article  CAS  Google Scholar 

  24. Monroe, D.G. et al. Estrogen receptor isoform-specific regulation of endogenous gene expression in human osteoblastic cell lines expressing either ERalpha or ERbeta. J. Cell. Biochem. 90, 315–326 (2003).

    Article  CAS  Google Scholar 

  25. Krum, S.A. et al. Unique ERalpha cistromes control cell type-specific gene regulation. Mol. Endocrinol. 22, 2393–2406 (2008).

    Article  CAS  Google Scholar 

  26. Monroe, D.G. et al. Estrogen receptor alpha and beta heterodimers exert unique effects on estrogen- and tamoxifen-dependent gene expression in human U2OS osteosarcoma cells. Mol. Endocrinol. 19, 1555–1568 (2005).

    Article  CAS  Google Scholar 

  27. Eeckhoute, J., Carroll, J.S., Geistlinger, T.R., Torres-Arzayus, M.I. & Brown, M. A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev. 20, 2513–2526 (2006).

    Article  CAS  Google Scholar 

  28. Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R. & Lieb, J.D. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).

    Article  CAS  Google Scholar 

  29. Eeckhoute, J. et al. Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers. Genome Res. 19, 372–380 (2009).

    Article  CAS  Google Scholar 

  30. Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res. 20, 578–588 (2010).

    Article  CAS  Google Scholar 

  31. Chan, C.S. & Song, J.S. CCCTC-binding factor confines the distal action of estrogen receptor. Cancer Res. 68, 9041–9049 (2008).

    Article  CAS  Google Scholar 

  32. Zhang, Y. et al. CCCTC-binding factor acts upstream of FOXA1 and demarcates the genomic response to estrogen. J. Biol. Chem. 285, 28604–28613 (2010).

    Article  CAS  Google Scholar 

  33. Charn, T.H. et al. Genome-wide dynamics of chromatin binding of estrogen receptors alpha and beta: mutual restriction and competitive site selection. Mol. Endocrinol. 24, 47–59 (2010).

    Article  CAS  Google Scholar 

  34. Martin, L.A. et al. Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation. J. Biol. Chem. 278, 30458–30468 (2003).

    Article  CAS  Google Scholar 

  35. Couse, J.F. & Korach, K.S. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr. Rev. 20, 358–417 (1999).

    Article  CAS  Google Scholar 

  36. Splinter, E. et al. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 20, 2349–2354 (2006).

    Article  CAS  Google Scholar 

  37. Neve, R.M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

    Article  CAS  Google Scholar 

  38. Schmidt, D. et al. ChIP-seq: Using high-throughput sequencing to discover protein-DNA interactions. Methods 48, 240–248 (2009).

    Article  CAS  Google Scholar 

  39. Carroll, J.S., Prall, O.W., Musgrove, E.A. & Sutherland, R.L. A pure estrogen antagonist inhibits cyclin E-Cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130–E2F4 complexes characteristic of quiescence. J. Biol. Chem. 275, 38221–38229 (2000).

    Article  CAS  Google Scholar 

  40. Narita, M. et al. A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126, 503–514 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Brown, R. Russell and R. Stark for bioinformatics support; J. Hadfield for genomic help; S. Vowler for statistical advice; and T. Spelsberg and I. Hutcheson for cell lines. We acknowledge support from The University of Cambridge, Cancer Research UK and Hutchison Whampoa Limited. C.S.R.-I. is supported by a Commonwealth fellowship, K.A.H. is supported by a Breast Cancer Campaign grant and J.S.C. and A.H. are supported by an ERC Starting Grant.

Author information

Authors and Affiliations

Authors

Contributions

All experiments were conceived by A.H., K.A.H. and J.S.C. Experiments were conducted by A.H., K.A.H. and C.S.R.-I. Computational analysis was conducted by A.H. and D.S. The manuscript was written by A.H., K.A.H. and J.S.C. with help from C.S.R.-I. and D.S.

Corresponding author

Correspondence to Jason S Carroll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 1087 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurtado, A., Holmes, K., Ross-Innes, C. et al. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43, 27–33 (2011). https://doi.org/10.1038/ng.730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.730

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer