Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia

Abstract

Essential thrombocythaemia (ET) is a chronic myeloproliferative syndrome due to sustained proliferation of megakaryocytes, which results in elevated numbers of circulating platelets, thrombotic or haemorrhagic episodes and occasional leukaemic transformation1. The cause of ET is unknown. Hereditary thrombocythaemia (HT) with autosomal–dominant transmission has been described with manifestations similar to those of sporadic ET2–8. As the thrombopoietin gene (THRO) encodes a lineage–restricted growth factor with profound stimulatory effects on megakaryopoiesis and platelet production9,10, we tested the hypothesis that HT results from a mutation in the human THRO gene. In a Dutch family with eleven affected individuals7, the thrombopoietin protein (TPO) concentrations in serum were consistently elevated in individuals with HT. We derived an intragenic CA marker for the human THRO gene and performed linkage analysis in fourteen informative meioses in this family. This resulted in a lod score of 3.5 at θ=0. A G→C transversion was found in the splice donor site of intron 3 of the THRO gene in all affected family members. This mutation leads to THRO mRNAs with shortened 5′–untranslated regions (UTR) that are more efficiently translated than the normal THPO transcripts. We conclude that a splice donor mutation in THPO leads to systemic overproduction of TPO and causes thrombocythaemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Murphy, S., Peterson, P., Hand, H. & Laszlo, J. Experience of the Polycythemia Vera Study Group with essential thrombocythemia: a final report on diagnostic criteria, survival, and leukemic transition by treatment. Semin. Hematol. 34, 29–39 (1997)

    CAS  PubMed  Google Scholar 

  2. Pickers, M. & Speck, B. Thrombocythaemia: familial occurrence and transition into blastic crisis. Acta Haematol. 51, 257–265 (1974)

    Article  Google Scholar 

  3. Slee, P.H.T.J., van Everdingen, J.J.E., Geraedts, J.P.M., te Velde, J. & den Ottolander, G.J. Familial myeloproliferative disease. Acta Med. Scand. 210, 321–327 (1981)

    Article  CAS  Google Scholar 

  4. Eyster, M.E. et al. Familial essential thrombocythemia. Am. J. Med. 80, 497–502 (1986)

    Article  CAS  Google Scholar 

  5. Fernandez-Robles, E., Vermylen, C., Martiat, P., Ninane, J. & Cornu, G. Familial essential thrombocythemia. Pediatr. Hematol. Oncol. 7, 373–376 (1990)

    Article  CAS  Google Scholar 

  6. Williams, E.G. & Shahidi, NT. Benign familial thrombocytosis. Am. J. Hematol. 37, 124–125 (1991)

    Article  CAS  Google Scholar 

  7. Schlemper, R.J., van der Maas, A.P.C. & Eikenboom, J.C.J. Familial essential thrombocythemia: clinical characteristics of 11 cases in one family. Ann. Hematol. 68, 153–158 (1994)

    Article  CAS  Google Scholar 

  8. Kikuchi, M. et al. Familial thrombocytosis. Br. J. Haematol. 89, 900–902 (1995)

    Article  CAS  Google Scholar 

  9. Kaushansky, K. Thrombopoietin: understanding and manipulating platelet production. Annu. Rev. Med. 48, 1–11 (1997)

    Article  CAS  Google Scholar 

  10. Eaton, D.L. & de Sauvage, F.J. Thrombopoietin: the primary regulator of megakaryocytopoiesis and thrombopoiesis. Exp. Hematol. 25, 1–7 (1997)

    CAS  PubMed  Google Scholar 

  11. van Dijken, P.J., Woldendorp, K.H. & van Wouwe, J.P. Familial thrombocytosis in infancy presenting with a leukaemoid reaction. Acta Paediatr. 85, 1132–1134 (1996)

    Article  CAS  Google Scholar 

  12. Kaushansky, K. et al. Promotion of megakaryocyte progenitor expansion and differentiation by thec-MpI ligandthrombopoietin. Nature 369, 568–571 (1994)

    Article  CAS  Google Scholar 

  13. Zhou, W., Toombs, C.F., Zou, T., Quo, J. & Robinson, M.O. Transgenic mice overexpressing human c-mpl ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood 89, 1551–1559 (1997)

    CAS  PubMed  Google Scholar 

  14. Van, X.Q. et al. Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood, 86, 4025–4033 (1995)

    Google Scholar 

  15. Tahara, T. et al. A sensitive sandwich ELISA for measuring thrombopoietin inhuman serum: serum thrombopoietin levels in healthy volunteers and in patients with haemopoietic disorders. Br. J. Haematol. 93, 783–788 (1996)

    Article  CAS  Google Scholar 

  16. Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992)

    Article  CAS  Google Scholar 

  17. Chang, M.S. et al. Cloning and characterization of the human megakaryocyte growth and development factor (mgdf) gene. J. Biol. Chem. 270, 511–514 (1995)

    Article  CAS  Google Scholar 

  18. Sohma, Y. et al. Molecular cloning and chromosomal localization of the human thrombopoietin gene. FEBS Lett 353, 57–61 (1994)

    Article  CAS  Google Scholar 

  19. Kamura, T., Handa, H., Hamasaki, N. & Kitaijma, S. Characterization of the human thrombopoietin gene promoter-a possible role of an Ets transcription factor, E4TF1/GABP. 7. Biol. Chem. 272, 11361–11368(1997)

    Article  CAS  Google Scholar 

  20. Nielsen, H., Engelbrecht, E., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997)

    Article  CAS  Google Scholar 

  21. Stoffel, R., Wiestner, A. & Skoda, R.C. Thrombopoietin in thrombocytopenic mice: evidence against regulation at the mRNA level and for a direct regulatory role of platelets. Blood 87, 567–573 (1996)

    CAS  PubMed  Google Scholar 

  22. Sachs, A.B., Sarnow, P. & Hentze, M.W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89, 831–838 (1997)

    Article  CAS  Google Scholar 

  23. Jackson, R.J. & Wickens, M. Translational controls impinging on the 5′-untranslated region and initiatio factor proteins. Curr. Opin. Genet. DeveL 7, 233–241 (1997)

    Article  CAS  Google Scholar 

  24. D'Andrea, A.D. Cytokine receptors in congenital hematopoietic disease. N. Engl. J. Med. 330, 839–846 (1994)

    Article  CAS  Google Scholar 

  25. Ott, J. A computer program for linkage analysis of general human pedigrees. Am. J. Hum. Genet. 28, 528–529 (1967)

    Google Scholar 

  26. Chomczynski, P. & Sachhi, N. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Analyt. Biochem. 162, 156–159 (1987)

    Article  CAS  Google Scholar 

  27. Seed, B. & Aruffo, A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc. Natl. Acad. Sci. USA 84, 3365–3369 (1987)

    Article  CAS  Google Scholar 

  28. Berger, J., Hauber, J., Hauber, R., Geiger, R. & Cullen, B.R. Secreted placenta! alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10 (1988)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiestner, A., Schlemper, R., van der Maas, A. et al. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat Genet 18, 49–52 (1998). https://doi.org/10.1038/ng0198-49

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0198-49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing