Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localization of a gene causing cystinuria to chromosome 2p

Abstract

Cystinuria is an autosomal recessive disorder of amino acid transport. It is a common hereditary cause of kidney stones worldwide, and is associated with significant morbidity. In 17 affected families, we found linkage between cystinuria and three chromosome 2p markers. Maximal two–point lod scores between cystinuria and D2S119, D2S391 and D2S288 were 8.23 (θ=0.07), 3.73 (θ=0.15) and 3.03 (θ=0.12), respectively. Analysis of recombinants and multipoint linkage data indicated that the most likely order is cen–D2S391D2S119–cystinuria–D2S177–tel. We also observed high rates of homozygosity for markers in this chromosomal region among 11 affected offspring of consanguineous marriages. Based on its map position and function, the recently cloned SLC3A1 amino acid transporter gene is a primary candidate gene for this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKusick, V.A. Mendelian Inheritance in Man 9th edn (Johns Hopkins University Press, Baltimore, 1990).

    Google Scholar 

  2. Wollaston, W.H. On cystic oxide. A new species of urinary calculus. Phil. Tr. Roy. Soc. Lond. 100, 223–230 (1810).

    Article  Google Scholar 

  3. Garrod, A.E. Inborn errors of metabolism. Lancet 2, 1–7 (1908).

    Article  CAS  Google Scholar 

  4. Dent, C.E. & Rose, G.A. Amino acid metabolism in cystinuria. Quart. J. Med. 20,205–219 (1951).

    CAS  PubMed  Google Scholar 

  5. Dahlberg, P.G., Vandenberg, C.J., Kurtz, S.B., Wilson, D.M. & Smith, L.W. Clinical features and management of cystinuria. Mayo. Clin. Proc. 52, 533–542 (1977).

    CAS  PubMed  Google Scholar 

  6. Stephens, A.D. Cystinuria and its treatment: 25 years experience at St Bartholomew's hospital. J. inher. metab. Dis. 12, 197–209 (1989).

    Article  CAS  Google Scholar 

  7. Polinsky, M.S., Kaiser, B.A. & Baluarte, H.J. Urolithiasis in childhood. Pediatr. Clin. North Am. 34, 683–710 (1987).

    Article  CAS  Google Scholar 

  8. Walsh, P.C., Retik, A.B., Staney, T.A. & Vaughan, E.D. Cambell's Urology 6th edn (W. B. Saunders Company, Philadelphia, 1992).

    Google Scholar 

  9. Levy, H.L., Madigan, P.M. & Shih, V.E. Massachusetts metabolic disorders screening program: I. Technics and results of urine screening. Pediatrics 49, 825–836 (1972).

    CAS  PubMed  Google Scholar 

  10. Weinberger, A. et al. High frequency of cystinuria among Jews of Libyan origin. Hum. Hered. 24, 568–572 (1974).

    Article  CAS  Google Scholar 

  11. Rosenberg, L.E., Downing, S., Durant, J.L. & Segal, S. Cystinuria:Biochemical evidence for three genetically distinct diseases. J. clin. Invest. 45, 365–371 (1966).

    Article  CAS  Google Scholar 

  12. Goodyer, P.R., Clow, C., Reade, T. & Girardin, C. Prospective analysis and classification of patients with cystinuria identified in a newborn screening program. J. Pediatr. 122, 568–572 (1993).

    Article  CAS  Google Scholar 

  13. Pras, E. et al. Mapping of a gene causing familial Mediterranean fever to the short arm of chromosome 16. New Engl. J. Med. 326, 1509–1513 (1992).

    Article  CAS  Google Scholar 

  14. Lee W-S., Wells, R.G., Sabbag, R.V., Mohandas, T.K. & Hediger, M.A. Cloning and chromosomal localization of a human kidney cDNA involved in cystine, dibasic, and neutral amino acid transport. J. clin. Invest. 91, 1959–1963 (1993).

    Article  CAS  Google Scholar 

  15. Smith, C.A.B. The detection of linkage in human genetics. J. R. Stat. Soc.(B) 15, 153–184 (1953).

    Google Scholar 

  16. Lander, E.S. & Botstein, D. Homozygosity mapping: A way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  Google Scholar 

  17. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  Google Scholar 

  18. Frydman, M. et al. Assignment of the gene for Wilson disease to chromosome 13: Linkage to the esterase D locus. Proc. natn. Acad. Sci. U.S.A. 82, 1819–1821 (1985).

    Article  CAS  Google Scholar 

  19. Goto, M., Rubenstein, M., Weber, J., Woods, K. & Drayna, D. Genetic linkage of Werner's syndrome to five markers on chromosome 8. Nature 355, 735–738 (1992).

    Article  CAS  Google Scholar 

  20. Pollak, M.R. et al. Homozygosity mapping of the gene for alkaptonuria to chromosome 3q2. Nature Genet. 5, 201–204 (1993).

    Article  CAS  Google Scholar 

  21. Ben Hamida, C. et al. Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nature Genet. 5, 195–200 (1993).

    Article  CAS  Google Scholar 

  22. Ellis, N.A., Roe, A.M., Otterud, B., Leppert, M. & German, J. Homozygosity mapping of the Bloom's syndrome locus. Am. J. hum. Genet. 51, A187 (1992).

    Google Scholar 

  23. Gilliam, T.C. et al. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 345, 823–825 (1990).

    Article  CAS  Google Scholar 

  24. Ben Othmane, K. et al. Linkage of Tunisian autosomal recessive Duchenne-like muscular dystrophy to the pericentromeric region of chromosome 13q. Nature Genet. 2, 315–317 (1992).

    Article  CAS  Google Scholar 

  25. Antignac, C. et al. A gene for familial juvenile nephronophthisis (recessive medullary cystic kidney disease) maps to chromosome 2p. Nature Genet. 3, 342–345 (1993).

    Article  CAS  Google Scholar 

  26. Hildebrandt, F. et al. Mapping of ageneforfamilial juvenile nephronophthisis: refining the map and defining flanking markers on chromosome 2. Am. J. hum. Genet. 53, 1256–1261 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wells, R.G. & Hediger, M.A. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to the glucosidases. Proc. natn. Acad. Sci. U.S.A. 89, 5596–5600 (1992).

    Article  CAS  Google Scholar 

  28. Tate, S.S., Yan, N. & Udenfriend, S. Expression cloning of a Na+-independent neutral amino acid transporter from rat kidney. Proc. natn. Acad. Sci. U.S.A. 89, 1–5 (1992).

    Article  CAS  Google Scholar 

  29. Bertran, J. et al. Expression cloning of a cDNAfrom rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc. natn. Acad. Sci. U.S.A. 89, 5601–5605 (1992).

    Article  CAS  Google Scholar 

  30. Bertran, J. et al. Expression cloning of a human renal cDNAthat induces high affinity transport of L-cystine shared with dibasic amino acids in Xenopus oocytes. J. biol. Chem. 268, 14842–14849 (1993).

    CAS  PubMed  Google Scholar 

  31. Lathrop, G.M., Lalouel, J.-M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  32. Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugenics 12, 172–175 (1944).

    Article  Google Scholar 

  33. Ott, J. Analysis of Human Genetic Linkage Rev edn (Johns Hopkins University Press, Baltimore, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pras, E., Arber, N., Aksentijevich, I. et al. Localization of a gene causing cystinuria to chromosome 2p. Nat Genet 6, 415–419 (1994). https://doi.org/10.1038/ng0494-415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0494-415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing