Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning of the galactokinase cDNA and identification of mutations in two families with cataracts

Abstract

Galactokinase is an essential enzyme for the metabolism of galactose and its deficiency causes congenital cataracts during infancy and presenile cataracts in the adult population. We have cloned the human galactokinase cDNA, which maps to chromosome 17q24, and show that the isolated cDNA expresses galactokinase activity in bacteria and mammalian cells. We also describe two different mutations in this gene in unrelated families with galactokinase deficiency and cataracts. The availably of the cloned galactokinase gene provides an important reference to identify mutations in patients with galactokinase deficiency and cataracts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Foster, A. & Johnson, G.J. Magnitude and causes of blindness in the developing world. Int. Ophthalmol. 14, 135–140 (1990).

    Article  CAS  Google Scholar 

  2. Segal, S. Disorders of Galactose Metabolism. in The Metabolic Basis of Inherited Disease. Vol. 1. (eds Scriver, C.R. et al.) 453–480 (McGraw-Hill, New York, 1989).

    Google Scholar 

  3. Gitzelmann, R. Deficiency of erythrocyte galactokinase in a patient with galactose diabetes. Lancet 2, 670–671 (1965).

    Article  CAS  Google Scholar 

  4. Stambolian, D. Galactose and cataract. Survey of Ophthalmol. 32, 333–349 (1988).

    Article  CAS  Google Scholar 

  5. Tedesco, T.A. et al. The Philadelphia variant of galactokinase. Am. J. hum. Genet. 29, 240–247 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Magnani, M., Cucchiarini, L., Dacha, M & Fornaini, G. A new variant of galactokinase. Hum. Hered. 32, 329–334 (1982).

    Article  CAS  Google Scholar 

  7. Tedesco, T.A. et al. A variant of human galactokinase with elevated activity. Pediatr. Res. 7, 394 (1973).

    Google Scholar 

  8. Tedesco, T.A. et al. Human erythrocyte galactokinase and galactose-1-phosphate uridylyltransferase: a population survey. Am. J. hum. Genet. 27, 737–747 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Segal, S., Rutman, J.Y. & Frimpter, G.W. Galactokinase deficiency and mental retardation. J. Pediatr. 95, 750–752 (1979).

    Article  CAS  Google Scholar 

  10. Stambolian, D., Scarpino-Myers, V., Eagle, R.C., Hodes, B. & Harris, H. Cataracts in patients heterozygous for galactokinase deficiency. Invest. Ophthal. Vis. Sci. 27, 429–433 (1986).

    CAS  PubMed  Google Scholar 

  11. Skalka, H.W. & Prchal, J.T. Presenile cataract formation and decreased activity of galactosemic enzymes. Arch. Ophthalmol. 98, 269–273 (1980).

    Article  CAS  Google Scholar 

  12. Monteleone, J.A., Beutler, E., Monteleone, P.L., Utz, C.L. & Casey, E.C. Cataracts, galactosuria, and hypergalactosemia due to galactokinase deficiency in a child. Studies of a kindred. Am. J. Med. 50, 403–407 (1971).

    Article  CAS  Google Scholar 

  13. Levy, N.S., Krill, A.E. & Beutler, E. Galactokinase deficiency and cataracts. Am. J. Ophthalmol. 74, 41–48 (1972).

    Article  CAS  Google Scholar 

  14. Magnani, M., Cucchiarini, L., Stocchi, V. & Dacha, M. Red blood cell galactokinase activity and presenile cataracts. Enzyme 29, 58–60 (1983).

    Article  CAS  Google Scholar 

  15. Harley, J.D., Irvine, S., Mutton, P. & Gupta, J.D. Maternal enzymes of galactose metabolism and the inexplicable ingantile cataract. Lancet 2, 259–261 (1974).

    Article  CAS  Google Scholar 

  16. Debouck, C. et al. Structure of the galactokinase gene of E. coli, the last (?) gene of the gal operon. Nucl. Acids Res. 13, 1841–1853 (1985).

    Article  CAS  Google Scholar 

  17. Citron, B.A. & Donelson, J.E. Sequence of the Saccharomyces GAL region and its transcription in vivo. J. Bact. 158, 269–278 (1984).

    CAS  PubMed  Google Scholar 

  18. Adams, C.W., Fornwald, J.A., Schmidt, F.J., Rosenberg, M. & Brawner, M.E. Gene organization and structure of the Streptomyces lividans gal operon. J. Bact. 170, 203–212 (1988).

    Article  CAS  Google Scholar 

  19. Lee, R.T., Peterson, C.L., Calman, A.F., Herskowitz, I. & O'Donnell, J.J. Cloning of a human galactokinase gene (GK2) on chromosome 15 by complementation in yeast. Proc. natn. Acad. Sci. U.S.A. 89, 10887–10891 (1992).

    Article  CAS  Google Scholar 

  20. Elsevier, S.M. et al. Assignment of the gene for galactokinase to human chromosome 17 and its regional localization to band q21–22. Nature 251, 633–636 (1974).

    Article  CAS  Google Scholar 

  21. Stambolian, D., Scarpino-Myers, V. & Harris, H. Purification of human galactokinase and evidence for its existence as a monomer form. Biochim. Biophys. Acta. 831, 306–312 (1985).

    Article  CAS  Google Scholar 

  22. Adams, M.D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).

    Article  CAS  Google Scholar 

  23. Tsay, Y.H. & Robinson, G.W. Cloning and characterization of ERGS, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase. Molec. cell. Biol. 11, 620–631 (1991).

    Article  CAS  Google Scholar 

  24. McKenney, K. et al. A system to study promoter and terminator signals recognized by E.coli RNA polymerase. In Gene Amplification and Analysis. Vol. II(eds Chirikjian, J.G. & Papas, T.) 383–415 (Elsevier-North Holland, 1981).

    Google Scholar 

  25. Aijar, N. et al. Human AT1 receptor is a single copy gene:characterization in a stable cell line. Molec. cell. Biochem. 131, 75–86 (1994).

    Article  Google Scholar 

  26. Pickering, W.R. & Howell, R.R. Galactokinase deficiency: clinical and biochemical findings in a new kindred. J. Peds. 81, 50–55 (1972).

    Article  CAS  Google Scholar 

  27. Olambiwonnu, N.O., McVie, R., Ng, W.G., Frasier, S.D. & Donnell, G.N. Galactokinase deficiency in twins: clinical and biochemical studies. Pediatrics 53, 314–318 (1974).

    CAS  PubMed  Google Scholar 

  28. Best, S., Reim, D.F., Mozdzanowski, J. & Speicher, D.W. High sensitivity peptide sequence analysis using In Situ proteolysis on high retention PVDF membranes and a biphasic reaction column sequencer. in Techniques in Protein Chemistry V (ed. Crabb, J.W.) 205–213 (Academic Press, New York, 1994

    Google Scholar 

  29. Gluzman, Y. SV40-transformed simian cell support the replication of early SV40 mutants. Cell 23, 175–182 (1981).

    Article  CAS  Google Scholar 

  30. Caltabiano, M.M. et al. Transient production and secretion of human transforming growth factor TGF-b2. Gene 85, 479–488 (1989).

    Article  CAS  Google Scholar 

  31. Stambolian, D., Scarpino-Myers, V. & Harris, H. Isoelectric focusing of galactokinase in lens and other tissues. Exp. Eye Res. 38, 231–237 (1984).

    Article  CAS  Google Scholar 

  32. Stephenson, C. et al. Normal expression of thymidine kinase and O6-Methylguanine-DNA Methyltransferase in cultured fibroblasts from individuals with hereditary galactokinase deficiency. Biochem. Genet. 29, 135–144 (1991).

    Article  CAS  Google Scholar 

  33. Sambrook, J., Frirsch, E.F. & Maniatis, T., Cloning: a laboratory manual. (Cold Spring Harbor, Cold Spring Harbor, 1989).

  34. Proudfoot, N.J. & Brownlee, G.G. 3′ Non-coding region sequences in eukaryotic mRNA. Nature 263, 211 (1976).

    Article  CAS  Google Scholar 

  35. Mollet, B. & Pilloud, N. Galactose utilization in Lactobaciilus helveticus:isolation and characterization of the galactokinase (galK) and galactose-1 -phosphate uridyl transferase (gall) genes. J. Bacteriol. 173, 4464–4473 (1991).

    Article  CAS  Google Scholar 

  36. Meyer, J., Walker-Jonah, A. & Hollenberg, C.P. Galctokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae. Molec. cell. Biol. 11, 5454–5461 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stambolian, D., Ai, Y., Sidjanin, D. et al. Cloning of the galactokinase cDNA and identification of mutations in two families with cataracts. Nat Genet 10, 307–312 (1995). https://doi.org/10.1038/ng0795-307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0795-307

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing