Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene

Abstract

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are dominantly inherited chondrodysplasias characterized by short stature and early–onset osteoarthrosis. The disease genes in families with PSACH and MED have been localized to an 800 kilobase interval on the short arm of chromosome 19. Recently the gene for cartilage oligomeric matrix protein (COMP) was localized to chromosome 19p13.1. In three patients with these diseases, we identified COMP mutations in a region of the gene that encodes a Ca++ binding motif. Our data demonstrate that PSACH and some forms of MED are allelic and suggest an essential role for Ca++ binding in COMP structure and function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. International Working Group on Constitutional Diseases of Bone. International classification of osteochondrodysplasias. Am. J. med. Genet. 44, 223–229 (1992).

  2. Maroteaux, P., Stanescu, R., Stanescu, V. & Fontaine, G. The mild form of pseudoachondroplasia. Eur. J. Pediatr. 133, 227–231 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Rimoin, D.L. et al. A large family with features of pseudoachondroplasia and multiple epiphyseal dysplasia: exclusion of seven candidate gene loci that encode proteins of the cartilage extracellular matrix. Hum. Genet. 93, 236–242 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Ribbing, S. Studien über hereditäre multiple Epiphysenstörungen. Acta. Radiol. Suppl. 34, 1–107 (1937).

    Google Scholar 

  5. Maroteaux, P. & Lamy, M. Les formes pseudoachondroplastiques des dysplasies spondylo-epiphysaires. Presse Med. 67, 383–386 (1959).

    CAS  PubMed  Google Scholar 

  6. Fairbank, T. Dysplasia epiphysialis multiplex. Br. J. Surg. 34, 225–232 (1947).

    Article  CAS  PubMed  Google Scholar 

  7. Maynard, J.A., Cooper, R.R. & Ponseti, I.V. A unique rough surfaced endoplasmic reticulum inclusion in pseudoachondroplasia. Lab. Invest. 26, 40–44 (1972).

    CAS  PubMed  Google Scholar 

  8. Stanescu, V., Stanescu, R. & Maroteaux, P. Etude morphologique et biochimique du cartilage de croissance dans les osteochondrodysplasies. Arch. Franc. Pediatr. 34, 1–80 (1977).

    Google Scholar 

  9. Stanescu, R., Stanescu, V., Muriel, M.P. & Maroteaux, P. Multiple epiphyseal dysplasia, Fairbank type: Morphologic and biochemical study of cartilage. Am. J. med. Genet. 45, 501–507 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Stanescu, V., Maroteaux, P. & Stanescu, R. The biochemical defect of pseudoachondroplasia. Eur. J. Pediatr. 138, 221–225 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Briggs, M.D. et al. Genetic linkage of pseudoachondroplasia to markers in the pericentromeric region of chromosome 19. Genomics. 18, 656–660 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Hecht, J.T. et al. Linkage of typical pseudoachondroplasia to chromosome 19. Genomics 18, 661–666 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Oehlmann, R., Summerville, G.P., Yeh, G., Weaver, E.J., Jiminez, S.A. & Knowlton, R.G. Genetic linkage mapping of multiple epiphyseal dysplasia to the pericentromeric region of chromosome 19. Am. J. hum. Genet. 54, 3–10 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Briggs, M.D. et al. Genetic mapping of a locus for multiple epiphyseal dysplasia (EDM2) to a region of chromosome 1 containing a type IX collagen gene. Am. J. hum. Genet. 55, 678–684 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Warman, M.L. et al. The genes encoding a2(IX) collagen (COL9A2) map to human chromosome 1 p32.2–p33 and mouse chromosome 4. Genomics 23, 158–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Hellsten, E. et al. Identification of YAC clones for human chromosome 1 p32 and physical mapping of the infantile neuronal ceroid lipofuscinosos (INCL) locus. Genomics 25, 404–412 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Deere, M. et al. Genetic heterogeneity in multiple epiphyseal dysplasia. Am. J. hum. Genet.. 56, 698–704 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Knowlton, R.G. et al. High resolution genetic and physical mapping of multiple epiphyseal dysplasia and pseudoachondroplasia mutations at chromosome 19p13.1–p12. Genomics. (in the press).

  19. Hedbom, E. et al. Cartilage matrix proteins. J. biol. Chem. 267, 6132–6136 (1992).

    CAS  PubMed  Google Scholar 

  20. Newton, G. et al. Characterization of human and mouse cartilage oligomeric matrix protein. Genomics 24, 435–439 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Tynan, K. et al. Organization of the multiple polymorphic sites of the D19S11 locus within a 650-kb cosmid contig. Genomics 17, 316–323 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Brandriff, B.F. et al. Human chromosome 19p: A fluorescence in situhybridization map with genomic distance estimates for 79 intervals spanning 20Mb. Genomics 23, 582–591 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Bomstein, P., Devarayalu, S., Edelhoff, S. & Disteche, C.M. Isolation and characterization of the mouse thrombospondins (Thbs3) gene. Genomics 15, 607–613 (1993).

    Article  Google Scholar 

  24. Lawler, J. & Hynes, R.O. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J. Cell Biol. 103, 1635–1648 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DMA by gel etectrophoresis as single-stranded conformation polymorphisms. Proc. natn. Acad. Sci. U.S.A. 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  26. Morgelin, M., Heinegard, D., Engel, J. & Paulsson, M. Electron microscopy of native cartilage oligomeric matrix protein purified from the swarm rat chondrosarcoma reveals a five-armed structure. J. biol. Chem. 267, 6137–6141 (1992).

    CAS  PubMed  Google Scholar 

  27. Oldberg, Å., Antonsson, P., Lindblom, K. & Heinegard, D. COMP (cartilage oligomeric matrix protein) is structurally related to the thrombospondins. J. biol. Chem. 267, 22346–22350 (1992).

    CAS  PubMed  Google Scholar 

  28. Efimov, V.P., Lustig, A. & Engel, J. The thrombospondin-like chains of cartilage oligomeric matrix protein are assembled by a five-stranded a-helical bundle between residues 20 and 83. FEBS Lett. 341, 54–58 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Bornstein, P. Thrombospondins: structure and regulation of expression. FASEB J. 6, 3290–3299 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Takagi, J., Fujisawa, T., Usui, T., Aoyoma, T., & Saito, Y. A single chain 19-kDa fragmant from bovine thrombospondin binds to type V collagen and heparin. J. biol. Chem. 268, 15544–15549 (1993).

    CAS  PubMed  Google Scholar 

  31. Mumby, S.M., Raugi, C.J. & Bornstein, P. Interactions of thrombospondin with extracellular matrix proteins: selective binding to type V collagen. J. Cell Biol. 98, 646–652 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Lahav, J., Schwartz, M.A. & Hynes, R.O. Analysis of platelet adhesion with a radioactive chemical crosslinking reagent: interaction of thrombospondin with flbronectin and collagen. Cell 31, 253–262 (1982).

    Article  CAS  PubMed  Google Scholar 

  33. Dixit, V.M., Hennessy, S.W., Grant, G.A., Santoro, S.A. & Frazier, W.A. Isolation and characterization of a heparin-binding domain from the amino terminus of platelet thrombospondin. J. biol. Chem. 259, 10100–10105 (1984).

    CAS  PubMed  Google Scholar 

  34. Klee, C.B., Couch, T.H. & Richmond, P.G. Calmodulin. A Rev. Biochem. 49, 489–515 (1980).

    Article  CAS  Google Scholar 

  35. DiCesare, P., Hauser. N., Lehman, D., Pasumarti, S. & Paulsson, M. Cartilage oligomeric matrix protein is an abundant component of tendon. FEBS Lett. 354, 237–240 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Hall, J.G., Dorst, J.P., Rotta, J. & McKusick, V.A. Gonadal mosaicism in pseudoachondroplasia. Am. J. hum. Genet. 28, 143–151 (1987).

    Article  CAS  Google Scholar 

  37. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Muttitocus linkage analysis in humans: detection of linkage and estimation of recombination. Am. J. hum. Genet. 37, 482–498 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggs, M., Hoffman, S., King, L. et al. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet 10, 330–336 (1995). https://doi.org/10.1038/ng0795-330

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0795-330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing