Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mutation in the human ryanodine receptor gene associated with central core disease

Abstract

Central core disease (CCD) is a morphologically distinct, autosomal dominant myopathy with variable clinical features. A close association with malignant hypertheria (MH) has been identified. Since MH and CCD genes have been linked to the skeletal muscle ryanodine receptor (RYR1) gene, cDNA sequence analysis was used to search for a causal RYR1 mutation in a CCD individual. The only amino acid substitution found was an Arg2434His mutation, resulting from the substitution of A for G7301. This mutation was linked to CCD with a lod score of 4.8 at a recombinant fraction of 0.0 in 16 informative meioses in a 130 member family, suggesting a causal relationship to CCD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shy, G.M. & Magee, K.R. A new congenital non-progressive myopathy. Brain 79, 610–621 (1956).

    Article  CAS  Google Scholar 

  2. Patterson, V.H., Hill, T.R., Fletcher, P.J. & Heron, J.R. Central core disease: clinical and pathological evidence within a family. Brain 102, 581–594 (1979).

    Article  CAS  Google Scholar 

  3. Ramsey, P.L. & Hensinger, R.N. Congenital dislocation of the hip associated with central core disease. J. Bone joint Surg. 57A, 648–651 (1975).

    Article  Google Scholar 

  4. Dubowitz, V. & Platts, M. Central core disease of muscle with focal wasting. J. Neurol. Neurosurg. Psychiatry. 28, 432–437 (1965).

    Article  CAS  Google Scholar 

  5. Shuaib, A., Paasuke, R.T. & Brownell, K.W. Central core disease: clinical features in 13 patients. Medicine 66, 389–396 (1987).

    Article  CAS  Google Scholar 

  6. Banker, B.Q. Congenital myopathies. in Myology (eds Engel, A. G. & Banker, B.Q.) 1528–1536 (McGraw Hill, New York, 1986).

    Google Scholar 

  7. Eng, G.D., Epstein, B.S., Engel, W.K., McKay, D.W. & McKay, R. Malignant hyperthermia and central core disease in a child with congenital dislocating hips. Arch. Neurol. 35, 189–197 (1978).

    Article  CAS  Google Scholar 

  8. Denborough, M.A., Dennett, X. & Anderson, R. Central core disease and malignant hyperpyrexia. Br. med. J. 1, 272–273 (1973).

    Article  CAS  Google Scholar 

  9. Frank, J.P., Harati, Y., Butler, I.J., Nelson, T.E. & Scott, C.I. Central core disease and malignant hyperthermia syndrome. Ann. Neurol. 7, 11–17 (1980).

    Article  CAS  Google Scholar 

  10. Brownell, A.K.W. Malignant hyperthermia: relationship to other diseases. Br. J. Anaesth. 60, 303–308 (1988).

    Article  CAS  Google Scholar 

  11. Fujii, J. et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451 (1991).

    Article  CAS  Google Scholar 

  12. Otsu, K., Khanna, V.K., Archibald, A.L. & MacLennan, D.H. Co-segregation of porcine malignant hyperthermia and a probable causal mutation in the skeletal muscle ryanodine receptor gene in backcross famillies. Genomics 11, 744–750 (1991).

    Article  CAS  Google Scholar 

  13. Gillard, E.F. et al. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 11, 751–755 (1991).

    Article  CAS  Google Scholar 

  14. Gillard, E.F. et al. Polymorphisms and deduced amino acid substitutions in the coding sequence of the ryanodine receptor (RYR1) gene in individuals with malignant hyperthermia. Genomics 13, 1247–1254 (1992).

    Article  CAS  Google Scholar 

  15. MacKenzie, A.E. et al. The human ryanodine receptor gene: Its mapping to 19q13.1, placement in a chromosome 19 linkage group, and exclusion as the gene causing myotonic dystrophy. Am. J. hum. Genet. 46, 1082–1089 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Haan, E.A., Freemantle, C.J., McCure, J.A., Friend, K.L. & Mulley, J.C. Assignment of the gene for central core disease to chromosome 19. Hum. Genet. 86, 187–190 (1990).

    Article  CAS  Google Scholar 

  17. Kausch, K. et al. Evidence for linkage of the central core disease locus to the proximal long arm of human chromosome 19. Genomics 10, 765–769 (1991).

    Article  CAS  Google Scholar 

  18. Mulley, J.C. et al. Refined genetic localization for central core disease. Am. J. hum. Genet. 52, 398–405 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  Google Scholar 

  20. Zorzato, F. et al. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. biol. Chem. 265, 2244–2256 (1990).

    CAS  Google Scholar 

  21. Takeshima, H. et al. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439–445 (1989).

    Article  CAS  Google Scholar 

  22. Otsu, K., Phillips, M.S., Khanna, V.K., De Leon, S. & MacLennan, D.H. Refinement of diagnostic assays for a probable causal mutation for porcine and human malignant hyperthermia. Genomics 13, 835–837 (1992).

    Article  CAS  Google Scholar 

  23. Walsh, M.P., Brownell, A.K.W., Littmann, V. & Paasuke, R.T. Electrophoresis of muscle proteins is not a method for diagnosis of malignant hyperthermia susceptibility. Anesthesiology 64, 473–479 (1986).

    Article  CAS  Google Scholar 

  24. Britt, B.A., The North American Caffeine Halothane Contracture Test, in Malignant Hyperthermia Current Concepts (eds M. A. Nalda Felipe, S. Gottmann & H.J. Khambatta) 53–69 (Normed Verlag, Bad Homburg, 1989).

    Google Scholar 

  25. MacLennan, D.H. et al. Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343, 559–561 (1990).

    Article  CAS  Google Scholar 

  26. McCarthy, T.V. et al. Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12–13.2. Nature 343, 562–564 (1990).

    Article  CAS  Google Scholar 

  27. Hogan, K., Couch, F., Powers, P.A.R. & Gregg, R.G. A cysteine-for arginine substitution (R614C) in the human skeletal muscle calcium release channel cosegregates with malignant hyperthermia. Anesth. Analg. 75, 441–448 (1992).

    Article  CAS  Google Scholar 

  28. Levitt, R.C. et al. Evidence for genetic heterogeneity in malignant hyperthermia susceptibility. Genomics 11, 543–547 (1991).

    Article  CAS  Google Scholar 

  29. Deufel, T. et al. Evidence for genetic heterogeneity of malignant hyperthermia susceptibility. Am. J. hum. Genet. 50, 1151–1161 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Caldwell, J.H. & Schaller, K.L. Opening the gates on ion channel disease. Nature Genet. 2, 87–89 (1992).

    Article  CAS  Google Scholar 

  31. Otsu, K., Willard, H.F., Khanna, V.K., Zorzato, F., Green, N.M. & MacLennan, D.H. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J. biol. Chem. 265, 13472–13483 (1990).

    CAS  Google Scholar 

  32. MacLennan, D.H. & Phillips, M.S. Malignant hyperthermia. Science 256, 789–794 (1992).

    Article  CAS  Google Scholar 

  33. Carafoli, E. Intracellular calcium homeostasis. A. Rev. Biochem. 56, 395–433 (1987).

    Article  CAS  Google Scholar 

  34. Wrogemann, K. & Pena, S.D.J. Mitochondrial calcium overload: a general mechanism for cell necrosis in muscle diseases. Lancet 1, 672–673 (1976).

    Article  CAS  Google Scholar 

  35. Miller, S.A., Dykes, S.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 (1988).

    Article  CAS  Google Scholar 

  36. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  37. Wang, A.M., Doyle, M.V. & Mark, D.F. Quantitation of mRNA by the polymerase chain reaction. Proc. natn. Acad. Sci. U.S.A. 86, 9719–9721 (1989).

    Google Scholar 

  38. Ott, J. A computer program for linkage analysis of general human pedigrees. Am. J. hum. Genet. 28, 528–529 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Chen, H., Khanna, V. et al. A mutation in the human ryanodine receptor gene associated with central core disease. Nat Genet 5, 46–50 (1993). https://doi.org/10.1038/ng0993-46

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0993-46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing