Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB–binding protein

Abstract

The recurrent translocation t(8;16)(p11 ;p13) is a cytogenetic hallmark for the M4/M5 subtype of acute myeloid leukaemia. Here we identify the breakpoint-associated genes. Positional cloning on chromosome 16 implicates the CREB-binding protein (CBP), a transcriptional adaptor/coactivator protein. At the chromosome 8 breakpoint we identify a novel gene, MOZ, which encodes a 2,004-amino-acid protein characterized by two C4HC3 zinc fingers and a single C2HC zinc finger in conjunction with a putative acetyltransferase signature. In-frame MOZ–CBP fusion transcripts combine the MOZ finger motifs and putative acetyltransferase domain with a largely intact CBP. We suggest that MOZ may represent a chromatin-associated acetyltransferase, and raise the possibility that a dominant MOZ–CBP fusion protein could mediate leukaemogenesis via aberrant chromatin acetylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rabbitts, T.H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Second MIC Cooperative Study Group. Morphologic, immunologic, and cytogenetic working classification of the acute myeloid leukemias. Cancer Genet. Cytogenet. 30, 1–15 (1988).

  3. Hanslip, J.I., Swansbury, G.J., Pinkerton, R. & Catovsky, D. The translocation t (8;16) (p11;p13) defines an AML subtype with distinct cytology and clinical features. Leuk. Lymphoma 6, 479–486 (1992).

    Article  Google Scholar 

  4. Mitelman, F. & Heim, S. Quantitative acute leukemia cytogenetics. Genes Chromosom. Cancer 5, 57–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Stark, B. et al. A distinct subtype of M4/M5 acute myeloblastic leukemia (AML) associated with t (8:16) (p11:p13), in a patient with the variant t (8:19) (p11:q13)-case report and review of the literature. Leuk. Res. 19, 367–379 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Quesnel, B. et al. Therapy-related acute myeloid leukemia with t (8;21), inv (16), and t (8;16): a report on 25 cases and review of the literature. J. Clin. Oncol. 11, 2370–2379 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Lai, J.L. et al. Acute monocytic leukemia with t (8;22) (p11;q13) translocation. Involvement of 8p11 as in classical t (8;16) (p11;p13). Cancer Genet. Cytogenet. 60, 180–182 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Tanzer, J. et al. La leucémie aiguë à translocation (8;16). Nouv. Rev. Fr. Hematol. 30, 83–87 (1988).

    CAS  PubMed  Google Scholar 

  9. Inhorn, R.C. et al. A syndrome of lymphoblastic lymphoma, eosinophilia, and myeloid hyperplasia/malignancy associated with t (8;13) (p11;q11): description of a distinctive clinicopathologic entity. Blood 7, 1881–1887 (1995).

    Google Scholar 

  10. Bellomo, M.J., Mÿhlematter, D., Wicht, M., Delacréz, F. & Schmidt, P.M. t (8;9) (p11 ;q32) in atypical chronic myeloid leukemia: a new cytogenetic-clinicopathologic association? Br. J. Haematol. 81, 307–309 (1992).

    Article  Google Scholar 

  11. Wessels, J.W. et al. Two distinct loci on the short arm of chromosome 16 are involved in myeloid leukemia. Blood 77, 1555–1559 (1991).

    CAS  PubMed  Google Scholar 

  12. Rubinstein, J.H. & Taybi, H. Broad thumbs and toes and facial abnormalities: a possible mental retardation syndrome. Am. J. Dis. Child. 105, 588–608 (1963).

    Article  CAS  PubMed  Google Scholar 

  13. Miller, R.W. & Rubinstein, J.H. Tumors in Rubinstein-Taybi syndrome. Am. J. Med. Genet. 56, 112–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Petrij, F. et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Chrivia, J.C. et al. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Kwok, R.P.S. et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370, 223–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Arias, J. et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370, 226–229 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Kamei, Y. et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Eckner, R. et al. Molecular cloning and functional analysis of the adenoviral E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8, 869–884 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Lundblad, J.R., Kwok, R.P.S., Laurence, M.E., Harter, M.L. & Goodman, R.H., E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374, 85–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka, S., Matsushita, Y. & Isono, K. Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12. Mol. Gen. Genet. 217, 289–293 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Tercero, J.C., Riles, L.E. & Wickner, R.B. Localized mutagenesis and evidence for post-transcriptional regulation of MAK3. J. Biol. Chem. 267, 20270–20276 (1992).

    CAS  PubMed  Google Scholar 

  23. Kleff, S., Andrulis, E.D., Anderson, C.W. & Sternglanz, R. Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270, 24674–24677 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Aasland, R., Gibson, T.J. & Steward, A.F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Blochem. Sci. 20, 56–59 (1995).

    Article  CAS  Google Scholar 

  25. Koken, M.H., Saib, A. & de Thé, H. A C4HC3 zinc finger motif. C. R. Acad. Sci. III 318, 733–739 (1995).

    CAS  Google Scholar 

  26. Saha, V., Chaplin, T., Gregorini, A., Ayton, P. & Young, B.D. The leukemia-associated-protein (LAP) domain, a cysteine-rich motif, is present in a wide range of proteins, including MLL, AF10, and MLLT6 proteins. Proc. Natl. Acad. Sci. USA 92, 9737–9741 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loidl, P. Histone acetylation: facts and questions. Chromosoma 103, 441–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Himmelbauer, H. et al. Saturating the region of the polycystic kidney disease gene with Noti linking clones. Am. J. Hum. Genet. 48, 325–334 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Wydner, K.L., Bhattacharya, S., Eckner, R., Lawrence, J.B. & Livingstone, D.M. Localization of human CREB-binding protein gene (CREBBP) to 16p13. 2-p13.3 by fluorescence in situ hybridization. Genomics 30, 395–396 (1995).

    CAS  PubMed  Google Scholar 

  32. Hudson, T.J. et al. An STS-based map of the human genome. Science 270, 1945–1954 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Dib, A. et al. Characterization of the region of the short arm of chromosome 8 amplified in breast carcinoma. Oncogene 10, 995–1001 (1995).

    CAS  PubMed  Google Scholar 

  34. Robbins, J., Dilworth, S.M., Laskey, R.A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Gabig, T.G., Mantel, P.L., Rosil, R. & Crean, C.D. Requiem: a novel zinc finger gene essential for apoptosis in myeloid cells. J. Biol. Chem. 269, 29515–29519 (1994).

    Google Scholar 

  36. Buchman, V.L. et al. Differential splicing creates a diversity of transcripts from a neurospecific developmentally regulated gene encoding a protein with new zinc-finger motifs. Nucleic Acids Res. 20, 5579–5585 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scherens, B., Bakkoury, M.E., Vierendeels, F., Dubois, E. & Messenguy, F. Sequencing and functional analysis of a 32560-bp segment on the left arm of yeast chromosome II. Identification of 26 open reading frames, including the KIPI and SEC17 genes. Yeasts 9, 1355–1371 (1993).

    Article  CAS  Google Scholar 

  38. Kamine, J., Elangovan, B., Subramanian, T., Coleman, D. & Chinnadurai, G. Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216, 357–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Georgakopoulos, T. & Thireos, G. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11, 4145–4152 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brownell, J.E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast GcnSp linking histone acetylation to gene activation. Cell 84, 843–851 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Lennon, G.G., Auffray, C., Poiymeropoulos, M. & Scares, M.B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics 33, 151–152 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Arany, Z., Newsome, D., Oldread, E., Livingstome, D.M. & Eckner, R. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374, 81–84 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Ruiz I. Altaba, A., Perry-O'keefe, H. & Melton, D.A. Xfin: an embryonic gene encoding a multifingered protein in Xenopus. EMBO Journal 6, 3065–3070 (1987).

    Google Scholar 

  44. Morishita, K. et al. Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54, 831–840 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Baldarelli, R.M. et al. Transcripts of the Drosophila blastoderm-specific locus, terminus, are concentrated posteriorly and encode a potential DNA-binding finger. Dev. Biol. 125, 85–95 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Dingwall, C. et al. Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals. EMBO J. 6, 69–74 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mitchell, P.J. & Tjian, R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371–378 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Tamkun, J.W. et al. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561–572 (1992).

    Google Scholar 

  49. Jeppesen, P. & Turner, B.M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74, 281–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Reifsnyder, C., Lowell, J., Clarke, A. & Pillus, P., Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nature Genet. 14, 42–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccnaromyces cerevisiae . Genetics 116, 9–22 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Megee, P.C., Morgan, B.A., Mittman, B.A. & Smith, M.M. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Science 247, 841–845 (1990).

    Google Scholar 

  53. Braunstein, M., Rose, A.B., Holmes, S.G., Allis, C.D. & Broach, J.R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592–604 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, F.-J.S., Lin, L.-W. & Smith, J.A. Nα-acetyiation is required for normal growth and mating of Saccharomyces cerevisiae. J. Bacteriol. 171, 5795–5802 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mullen, J.R. et al. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J. 8, 2067–2075 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aparicio, O.M., Billington, B.L. & Gottschling, D.E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae . Cell 66, 1279–1287 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Chirgwin, J.M., Pryzbyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  PubMed  Google Scholar 

  58. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).

  59. Liu, J. et al. Large-scale cloning of human chromosome 2-specific yeast artifical chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach. Genomics 26, 178–191 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borrow, J., Stanton, V., Andresen, J. et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB–binding protein. Nat Genet 14, 33–41 (1996). https://doi.org/10.1038/ng0996-33

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0996-33

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing