Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion

Abstract

The gene for spinocerebellar ataxia 7 (SCA7) has been mapped to chromosome 3p12–13. By positional cloning, we have identified a new gene of unknown function containing a CAG repeat that is expanded in SCA7 patients. On mutated alleles, CAG repeat size is highly variable, ranging from 38 to 130 repeats, whereas on normal alleles it ranges from 7 to 17 repeats. Gonadal instability in SCA7 is greater than that observed in any of the seven known neuro-degenerative diseases caused by translated CAG repeat expansions, and is markedly associated with paternal transmissions. SCA7 is the first such disorder in which the degenerative process also affects the retina.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Konigsmark, B.W. & Weiner, L.P. The olivopontocerebellar atrophies: a review. Medicine (Baltimore) 49, 227–241 (1970).

    Article  CAS  Google Scholar 

  2. Berciano, J. Olivopontocerebellar atrophy: a review of 117 cases. J. Neurol. Sci. 53, 253–272 (1982).

    Article  CAS  Google Scholar 

  3. Harding, A.E. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias: a study of 11 families, including descendants of the ‘the Drew family of Walworth’. Brain 105, 1–28 (1982).

    Article  CAS  Google Scholar 

  4. Harding, A.E. Clinical features and classification of inherited ataxias. Adv. Neurol. 61, 1–14 (1993).

    CAS  PubMed  Google Scholar 

  5. Enevoldson, T.P., Sanders, M.D. & Harding, A.E. Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy: a clinical and genetic study of eight families. Brain 117, 445–460 (1994).

    Article  Google Scholar 

  6. Benomar, A. et al. Autosomal-dominant cerebellar ataxia with retinal degeneration (ADCA type II) is genetically different from ADCA type I. Ann. Neurol. 35, 439–444 (1994).

    Article  CAS  Google Scholar 

  7. Benomar, A. et al. The gene for autosomal dominant cerebellar ataxia with pigmentary macular dystrophy maps to chromosome 3p12–p21.1. Nature Genet. 10, 84–88 (1995).

    Article  CAS  Google Scholar 

  8. David, G. et al. The gene for autosomal dominant cerebellar ataxia type II is located in a 5-cM region in 3p12-p13: genetic and physical mapping of the SCA7 locus. Am. J. Hum. Genet. 59, 1328–1336 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gouw, L.G. et al. Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nature Genet. 10, 89–93 (1995).

    Article  CAS  Google Scholar 

  10. Holmberg, M. et al. Localization of autosomal dominant cerebellar ataxia associated with retinal degeneration and anticipation to chromosome 3p12–p21.1. Hum. Mol. Genet. 4, 1441–1445 (1995).

    Article  CAS  Google Scholar 

  11. Krols, L. et al. Refinement of the locus for autosomal dominant cerebellar ataxia type II to chromosome 3p21.1–14.1. Hum. Genet. 99, 225–232 (1997).

    Article  CAS  Google Scholar 

  12. Jöbsis, G.J. et al. Autosomal dominant cerebellar ataxia with retinal degeneration (ADCA II): clinical and neuropathological findings in two pedigrees and genetic linkage to 3p12–p21.1. J. Neurol. Neurosurg. Psychiatry 367–371 (1997).

  13. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  14. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  Google Scholar 

  15. Pulst, S.-M. et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 14, 269–276 (1996).

    Article  CAS  Google Scholar 

  16. Sanpei, K. et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 14, 277–284 (1996).

    Article  CAS  Google Scholar 

  17. Imbert, G. et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 14, 285–291 (19%).

    Article  CAS  Google Scholar 

  18. Kawaguchi, Y. et al. CAG expansion in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–227 (1994).

    Article  CAS  Google Scholar 

  19. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  Google Scholar 

  20. Nagafuchi, S. et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nature Genet. 8, 177–182 (1994).

    Article  CAS  Google Scholar 

  21. Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995).

    Article  CAS  Google Scholar 

  22. Stevanin, G. et al. Screening for proteins with polyglutamine expansions in autosomal dominant cerebellar ataxias. Hum. Mol. Genet. 5, 1887–1892 (1996).

    Article  CAS  Google Scholar 

  23. Lindblad, K. et al. An expanded CAG repeat sequence in spinocerebellar ataxia type 7. Genome Res. 6, 965–971 (1996).

    Article  CAS  Google Scholar 

  24. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  25. Cancel, G. et al. Marked phenotypic heterogeneity associated with expansion of a CAG repeat sequence at the spinocerebellar ataxia 3/Machado-Joseph disease locus. Am. J. Hum. Genet. 57, 809–816 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cancel, G. et al. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum. Mol. Genet. 6, 709–715 (1997).

    Article  CAS  Google Scholar 

  27. Kozak, M. An analysis of 5-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic. Acids. Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  28. Dingwall, C. & Laskey, R.A. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16, 478–481 (1991).

    Article  CAS  Google Scholar 

  29. Mandel, J.-L. Breaking the rule of three. Nature 386, 767–769 (1997).

    Article  CAS  Google Scholar 

  30. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the a1A-voltage-dependent calcium channel. Nature Genet 15, 62–69 (1997).

    Article  CAS  Google Scholar 

  31. Diirr, A. & Brice, A. Genetics of movement disorders. Curr. Opin. Neurol. 9, 290–297 (1996).

    Article  Google Scholar 

  32. Martin, J.J. et al. On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol. 88, 277–286 (1994).

    Article  CAS  Google Scholar 

  33. Ikeuchi, T. et al. Dentatorubral-pallidoluysian atrophy (DRPLA): close correlation of CAG repeat expansions with the wide spectrum of clinical presentations and prominent anticipation. Semin. Cell Biol. 6, 37–44 (1995).

    Article  CAS  Google Scholar 

  34. Leeflang, E.P. et al. Single sperm analysis of the trinucleotide repeats in the Huntington's disease gene: quantification of the mutation frequency spectrum. Hum. Mol. Genet. 4, 1519–1526 (1995).

    Article  CAS  Google Scholar 

  35. Chong, S.S. et al. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for huntington disease: evidence from single sperm analyses. Hum. Mol. Genet. 6, 301–309 (1997).

    Article  CAS  Google Scholar 

  36. Igarashi, S. et al. Intergenerational instability of the CAG repeat of the gene for Machado–Joseph disease (MJD1) is affected by the genotype of the normal chromosome: implications for the molecular mechanisms of the instability of the CAG repeat. Hum. Mol. Genet. 5, 923–932 (1996).

    Article  CAS  Google Scholar 

  37. Takiyama, Y. et al. Single sperm analysis of the CAG repeats in the gene for Machado–Joseph disease (MJD1): evidence for non-Mendelian transmission of the MJD1 gene and for the effect of the intragenic CGG/GGG polymorphism on the intergenerational instability. Hum. Mol. Genet. 6, 1063–1068 (1997).

    Article  CAS  Google Scholar 

  38. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E coil. Nature Genet. 10, 213–218 (1995).

    Article  CAS  Google Scholar 

  39. Gerber, H.P. et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811 (1994).

    Article  CAS  Google Scholar 

  40. Ross, C.A. When more is less: pathogenesis of glutamine repeat neurodegenerative disorders. Neuron 15, 493–496 (1995).

    Article  CAS  Google Scholar 

  41. Stevanin, G. et al. Linkage disequilibrium between the spinocerebellar ataxia 3/ Machado-Joseph disease mutation and two intragenic polymorphisms, one of which, X359Y, affects the stop codon. Am. J. Hum. Genet. 60, 1548–1552 (1997).

    Article  CAS  Google Scholar 

  42. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  43. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  44. Ruberg, M. et al. Is differential regulation of mitochondrial transcripts in Parkinson's disease related to apoptosis? J. Neurochem. 2098–2110 (1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Benomar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

David, G., Abbas, N., Stevanin, G. et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17, 65–70 (1997). https://doi.org/10.1038/ng0997-65

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0997-65

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing