Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination

Abstract

Nephronophthisis (NPHP), an autosomal recessive cystic kidney disease, leads to chronic renal failure in children. The genes mutated in NPHP1 and NPHP4 have been identified, and a gene locus associated with infantile nephronophthisis (NPHP2) was mapped. The kidney phenotype of NPHP2 combines clinical features of NPHP and polycystic kidney disease (PKD). Here, we identify inversin (INVS) as the gene mutated in NPHP2 with and without situs inversus. We show molecular interaction of inversin with nephrocystin, the product of the gene mutated in NPHP1 and interaction of nephrocystin with β-tubulin, a main component of primary cilia. We show that nephrocystin, inversin and β-tubulin colocalize to primary cilia of renal tubular cells. Furthermore, we produce a PKD-like renal cystic phenotype and randomization of heart looping by knockdown of invs expression in zebrafish. The interaction and colocalization in cilia of inversin, nephrocystin and β-tubulin connect pathogenetic aspects of NPHP to PKD, to primary cilia function and to left-right axis determination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutations in INVS in individuals with NPHP2.
Figure 2: Nephrocystin associates with inversin in HEK293T cells and mouse tissue.
Figure 3: Molecular interaction of nephrocystin with β-tubulin.
Figure 4: Nephrocystin and inversin localize to primary cilia in renal tubular epithelial cells.
Figure 5: Disruption of zebrafish invs function results in renal cyst formation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Smith, C. & Graham, J. Congenital medullary cysts of the kidneys with severe refractory anemia. Am. J. Dis. Child. 69, 369–377 (1945).

    Google Scholar 

  2. Fanconi, G., Hanhart, E. & Albertini, A. Die familiäre juvenile Nephronophthise. Hel. Pediatr. Acta 6, 1–49 (1951).

    CAS  Google Scholar 

  3. Hildebrandt, F. Juvenile nephronophthisis. in Pediatric nephrology (eds. Barratt, T.M., Avner, E.D. & Harmon, W.E.) (Williams & Wilkins, Baltimore, 1999).

    Google Scholar 

  4. Hildebrandt, F. et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat. Genet. 17, 149–153 (1997).

    Article  CAS  Google Scholar 

  5. Saunier, S. et al. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum. Mol. Genet. 6, 2317–2323 (1997).

    Article  CAS  Google Scholar 

  6. Otto, E. et al. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am. J. Hum. Genet. 71, 1167–1171 (2002).

    Article  Google Scholar 

  7. Mollet, G. et al. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat. Genet. 32, 300–305 (2002).

    Article  CAS  Google Scholar 

  8. Waldherr, R., Lennert, T., Weber, H.P., Fodisch, H.J. & Scharer, K. The nephronophthisis complex. A clinicopathologic study in children. Virchows Arch. [Pathol. Anat.] 394, 235–254 (1982).

    Article  CAS  Google Scholar 

  9. Zeisberg, M., Strutz, F. & Muller, G.A. Renal fibrosis: an update. Curr. Opin. Nephrol. Hypertens. 10, 315–320 (2001).

    Article  CAS  Google Scholar 

  10. Otto, E. et al. Nephrocystin: gene expression and sequence conservation between human, mouse, and Caenorhabditis elegans. J. Am. Soc. Nephrol. 11, 270–282 (2000).

    CAS  PubMed  Google Scholar 

  11. Donaldson, J.C. et al. Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell-cell contacts of polarized epithelial cells. Exp. Cell Res. 256, 168–178 (2000).

    Article  CAS  Google Scholar 

  12. Donaldson, J.C., Dise, R.S., Ritchie, M.D. & Hanks, S.K. Nephrocystin-conserved domains involved in targeting to epithelial cell-cell junctions, interaction with filamins, and establishing cell polarity. J. Biol. Chem. 277, 29028–29035 (2002).

    Article  CAS  Google Scholar 

  13. Benzing, T. et al. Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers phosphorylation of Pyk2. Proc. Natl. Acad. Sci. USA 98, 9784–9789 (2001).

    Article  CAS  Google Scholar 

  14. Hildebrandt, F. & Otto, E. Molecular genetics of nephronophthisis and medullary cystic kidney disease. J. Am. Soc. Nephrol. 11, 1753–1761 (2000).

    CAS  PubMed  Google Scholar 

  15. Omran, H. et al. Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am. J. Hum. Genet. 66, 118–127 (2000).

    Article  CAS  Google Scholar 

  16. Haider, N.B., Carmi, R., Shalev, H., Sheffield, V.C. & Landau, D. A Bedouin kindred with infantile nephronophthisis demonstrates linkage to chromosome 9 by homozygosity mapping. Am. J. Hum. Genet. 63, 1404–1410 (1998).

    Article  CAS  Google Scholar 

  17. Gagnadoux, M.F., Bacri, J.L., Broyer, M. & Habib, R. Infantile chronic tubulo-interstitial nephritis with cortical microcysts: variant of nephronophthisis or new disease entity? Pediatr. Nephrol. 3, 50–55 (1989).

    Article  CAS  Google Scholar 

  18. Mochizuki, T. et al. Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395, 177–181 (1998).

    Article  CAS  Google Scholar 

  19. Morgan, D. et al. Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat. Genet. 20, 149–156 (1998).

    Article  CAS  Google Scholar 

  20. Igarashi, P. & Somlo, S. Genetics and pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 13, 2384–2398 (2002).

    Article  CAS  Google Scholar 

  21. Nauli, S.M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  Google Scholar 

  22. Morgan, D. et al. The left-right determinant inversin has highly conserved ankyrin repeat and IQ domains and interacts with calmodulin. Hum. Genet. 110, 377–384 (2002).

    Article  CAS  Google Scholar 

  23. Morgan, D. et al. Expression analyses and interaction with the anaphase promoting complex protein Apc2 suggest a role for inversin in primary cilia and involvement in the cell cycle. Hum. Mol. Genet. 11, 3345–3350 (2002).

    Article  CAS  Google Scholar 

  24. Ostrowski, L.E. et al. A proteomic analysis of human cilia: identification of novel components. Mol. Cell. Proteomics 1, 451–465 (2002).

    Article  CAS  Google Scholar 

  25. Yokoyama, T. et al. Reversal of left-right asymmetry: a situs inversus mutation. Science 260, 679–682 (1993).

    Article  CAS  Google Scholar 

  26. Okada, Y. et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 4, 459–468 (1999).

    Article  CAS  Google Scholar 

  27. Olbrich, H. et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat. Genet. advance online publication, 20 July 2003 (doi:10.1038/ng1216).

  28. Bhunia, A.K. et al. PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109, 157–168 (2002).

    Article  CAS  Google Scholar 

  29. Taulman, P.D., Haycraft, C.J., Balkovetz, D.F. & Yoder, B.K. Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol. Biol. Cell 12, 589–599 (2001).

    Article  CAS  Google Scholar 

  30. Haycraft, C.J., Swoboda, P., Taulman, P.D., Thomas, J.H. & Yoder, B.K. The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128, 1493–1505 (2001).

    CAS  PubMed  Google Scholar 

  31. Barr, M.M. et al. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr. Biol. 11, 1341–1346 (2001).

    Article  CAS  Google Scholar 

  32. Yoder, B.K., Hou, X. & Guay-Woodford, L.M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    Article  CAS  Google Scholar 

  33. Hou, X. et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J. Clin. Invest. 109, 533–540 (2002).

    Article  CAS  Google Scholar 

  34. Calvet, J.P. Ciliary signaling goes down the tubes. Nat. Genet. 33, 113–114 (2003).

    Article  CAS  Google Scholar 

  35. Nurnberger, J., Bacallao, R.L. & Phillips, C.L. Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. Mol. Biol. Cell. 13, 3096–3106 (2002).

    Article  CAS  Google Scholar 

  36. Woo, D.D., Miao, S.Y., Pelayo, J.C. & Woolf, A.S. Taxol inhibits progression of congenital polycystic kidney disease. Nature 368, 750–753 (1994).

    Article  CAS  Google Scholar 

  37. Woo, D.D., Tabancay, A.P., Jr. & Wang, C.J. Microtubule active taxanes inhibit polycystic kidney disease progression in cpk mice. Kidney. Int. 51, 1613–1618 (1997).

    Article  CAS  Google Scholar 

  38. McQuinn, T.C., Miga, D.E., Mjaatvedt, C.H., Phelps, A.L. & Wessels, A. Cardiopulmonary malformations in the inv/inv mouse. Anat. Rec. 263, 62–71 (2001).

    Article  CAS  Google Scholar 

  39. Hirokawa, N., Noda, Y. & Okada, Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell. Biol. 10, 60–73 (1998).

    Article  CAS  Google Scholar 

  40. Pennekamp, P. et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol. 12, 938–943 (2002).

    Article  CAS  Google Scholar 

  41. Wu, G. et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177–188 (1998).

    Article  CAS  Google Scholar 

  42. Wu, G. et al. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat. Genet. 24, 75–78 (2000).

    Article  CAS  Google Scholar 

  43. Moyer, J.H. et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264, 1329–1333 (1994).

    Article  CAS  Google Scholar 

  44. Woo, D.D., Nguyen, D.K., Khatibi, N. & Olsen, P. Genetic identification of two major modifier loci of polycystic kidney disease progression in pcy mice. J. Clin. Invest. 100, 1934–1940 (1997).

    Article  CAS  Google Scholar 

  45. Kuida, S. & Beier, D.R. Genetic localization of interacting modifiers affecting severity in a murine model of polycystic kidney disease. Genome Res. 10, 49–54 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Omran, H. et al. Human adolescent nephronophthisis: gene locus synteny with polycystic kidney disease in pcy mice. J. Am. Soc. Nephrol. 12, 107–113 (2001).

    CAS  PubMed  Google Scholar 

  47. Benzing, T. et al. 14-3-3 interacts with regulator of G protein signaling proteins and modulates their activity. J. Biol. Chem. 275, 28167–28172 (2000).

    CAS  PubMed  Google Scholar 

  48. Benzing, T. et al. Upregulation of RGS7 may contribute to tumor necrosis factor-induced changes in central nervous function. Nat. Med. 5, 913–918 (1999).

    Article  CAS  Google Scholar 

  49. Drummond, I.A. et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125, 4655–4667 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the affected individuals and their families for participation, J. Robillard for discussion, R.H. Lyons and A. Imm for large-scale sequencing and P. Cochat for contribution of clinical data on individuals A8 and A10. F.H., G.W. and T.B. are supported by Sonderforschungsbereich 592 of the German Research Foundation and by DFG grants to T.B. and G.W.; I.A.D. and T.O. are supported by grants from the US National Institutes of Health to I.A.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedhelm Hildebrandt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otto, E., Schermer, B., Obara, T. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34, 413–420 (2003). https://doi.org/10.1038/ng1217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1217

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing