Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Donor splice-site mutations in WT1 are responsible for Frasier syndrome

Abstract

Frasier syndrome (FS) is a rare disease defined by male pseudo-hermaphroditism and progressive glomerulopathy13. Patients present with normal female external genitalia, streak gonads and XY karyotype4 and frequently develop gonadoblastoma1,2,5,6. Glomerular symptoms consist of childhood proteinuria and nephrotic syndrome, characterized by unspecific focal and segmental glomerular sclerosis, progressing to end-stage renal failure in adolescence or early adulthood4. No case of Wilms′ tumour has been reported, even in patients with extended follow-up15. In contrast with FS patients, most individuals with Denys-Drash syndrome (DOS; refs 6,7) have ambiguous genitalia or a female phenotype, an XY karyotype and dysgenetic gonads. Renal symptoms are characterized by diffuse mesangial sclerosis, usually before the age of one year, and patients frequently develop Wilms′ tumour89. Mutations of the Wilms′-tumour gene, WT1, cause different pathologies of the urogenital system, including DDS1012. WT1 is composed of ten exons and encodes a protein with four zinc-finger motifs and transcriptional and tumoursuppressor activities1315. Alternative splicing generates four isoforms: the fifth exon may or may not be present, and an alternative splice site in intron 9 allows the addition of three amino acids (KTS) between the third and fourth zinc fingers of WT1 (ref. 17). Here we demonstrate that FS is caused by mutations in the donor splice site in intron 9 of WT1, with the predicted loss of the +KTS isoform. Examination of WT1 transcripts indeed showed a diminution of the +KTS/-KTS isoform ratio in patients with FS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frasier, S., Bashore, R.A. & Mosier, H.D. Gonadoblastoma associated with pure gonadal dysgenesis in monozygotic twins. J. Pediatr. 64, 740–745 (1964).

    Article  CAS  Google Scholar 

  2. Haning, R.V., Chesney, R.W., Moorthy, A.V. & Gilbert, E.F. A syndrome of chronic renal failure and XY gonadal dysgenesis in young phenotypic females without genital ambiguity. Am. J. Kidney Dis. 6, 40–48 (1985).

    Article  Google Scholar 

  3. Kinberg, J.A., Angle, C.R. & Wilson, R.B. Nephropathy-gonadal dysgenesis, type 2: renal failure in three siblings with dysgenesis in one. Am. J. Kidney Dis. 9, 507–510 (1987).

    Article  CAS  Google Scholar 

  4. Moorthy, A.V., Chesney, R.W. & Lubinsky, M. Chronic renal failure and XY gonadal dysgenesis: “Frasier” syndrome— commentary on reported cases. Am. J. Med. Genet. 3, 297–302 (1987).

    Article  CAS  Google Scholar 

  5. Blanchet, P., Daloze, P., Lesage, R., Papas, S. & van Campenhout, J. XY gonadal dysgenesis with gonadoblastoma discovered after kidney transplantation. Am. J. Obstet Gynecol. 129, 221–222 (1977).

    Article  CAS  Google Scholar 

  6. Drash, A., Sherman, F., Hartmann, W.H. & Blizzard, R.M. A syndrome of pseudohermaphroditism, Wilms' tumor, hypertension and degenerative renal disease. j Pediatr. 76, 585–593 (1990).

    Article  Google Scholar 

  7. Denys, P., Malvaux, P., van den Berghe, H., Tanghe, W. & Proesmans, W. Association d'un syndrome anatomo-pathologique de pseudo-hermaphrodisme masculin, d'une tumeur de Wilms, d'une néphropathie parenchymateuse et d'un mosaicisme XX/XY. Arch. Fr. Pediatr. 24, 729–739 (1967).

    CAS  PubMed  Google Scholar 

  8. Jadresic, L. et al. Clinicopathologic review of twelve children with nephropathy, Wilms' tumor and genital abnormalities (Drash syndrome). J. Pediatr. 117, 717–725 (1990).

    Article  CAS  Google Scholar 

  9. Habib, R. et al. The nephropathy associated with male pseudo-hermaphroditism and Wilms' tumor (Drash syndrome): a distinctive glomerular lesion, report of 10 cases. Clin. Nephrol. 24, 269–278 (1985).

    CAS  PubMed  Google Scholar 

  10. Pelletier, J. et al. Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell. 67, 437–447 (1991).

    Article  CAS  Google Scholar 

  11. Hastie, N.D. Dominant negative mutations in the Wilms' tumour (WT1) gene cause Denys-Drash syndrome-proof that a tumour-suppressor gene plays a crucial role in normal genitourinary development. Hum. Mol. Genet. 1, 293–295 (1993).

    Article  Google Scholar 

  12. Little, M. & C A clinical overview of WT1 gene mutations. Hum. Mutat. 9, 209–225 (1997).

    Article  CAS  Google Scholar 

  13. Call, K.M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell. 60, 509–520 (1990).

    Article  CAS  Google Scholar 

  14. Gessler, M. et al. Homozygous deletion in Wilms' tumor of a zinc-finger gene identified by chromosome jumping. Nature. 343, 774–778 (1990).

    Article  CAS  Google Scholar 

  15. Pritchard-Jones, K. et al. The candidate Wilms' tumour gene is involved in genitourinary development. Nature. 346, 194–197 (1990).

    Article  CAS  Google Scholar 

  16. Kennedy, D., Ramsdale, T., Mattick, J. & Little, M. An RNA recognition motif in Wilms' tumour protein (WT1) revealed by structural modelling. Nature Genet. 12, 329–332 (1996).

    Article  CAS  Google Scholar 

  17. Haber, D.A. et al. Alternative splicing and genomic structure of the Wilms' tumor gene WT1. Proc. Natl. Acad. Sd. USA. 88, 9618–9622 (1991).

    Article  CAS  Google Scholar 

  18. Kreidberg, J.A. et al. WT-1 is required for early kidney development. Cell. 74, 679–691 (1993).

    Article  CAS  Google Scholar 

  19. Coppes, M.J., Huff, V. & J Denys-Drash syndrome: relating a clinical disorder to genetic alterations in the tumor suppressor gene WT1. J. Pediatr. 123, 673–678 (1993).

    Article  CAS  Google Scholar 

  20. Berta, P. et al. Molecular analysis of the sex-determining region from the Y chromosome in two patients with Frasier syndrome. Horm. Res. 37, 103–106 (1992).

    Article  CAS  Google Scholar 

  21. Poulat, F. et al. Distinct molecular origins for Denys-Drash and Frasier syndromes. Hum. Genet. 91, 285–286 (1993).

    Article  CAS  Google Scholar 

  22. Brunak, S. & Engelbrecht, J. Prediction of human mRNA donor and acceptor sites from the DMA sequence. J. Mol. Biol. 220, 49–65 (1991).

    Article  CAS  Google Scholar 

  23. Bruening, W. et al. Germline intronic and exonic mutations in the Wilms' tumour gene (WT1) affecting urogenital development. Nature Genet. 1, 144–148 (1992).

    Article  CAS  Google Scholar 

  24. Konig, A., Jakubiczka, S., Wieacker, P., Schlosser, H.W. & M Further evidence that imbalance of WT1 isoforms may be involved in Denys-Drash syndrome. Hum. Mol. Genet. 2, 1967–1968 (1993).

    Article  CAS  Google Scholar 

  25. Bardeesy, N., Zabel, B., Schmitt, K. & J WT1 mutations associated with incomplete Denys-Drash syndrome define a domain predicted to behave in a dominant-negative fashion. Genomics. 21, 663–665 (1994).

    Article  CAS  Google Scholar 

  26. Bruening, W. & J Denys-Drash syndrome: a role for the WT1 tumour suppressor gene in urogenital development. Semin. Dev. Biol. 5, 333–343 (1994).

    Article  CAS  Google Scholar 

  27. Schmitt, K., Zabel, B., Tulzer, G., Eitelberger, F. & Pelletier, J. Nephropathy with Wilms' tumour or gonadal dysgenesis: incomplete Denys-Drash syndrome or separate diseases? Eur. J. Pediatr. 154, 577–581 (1995).

    CAS  Google Scholar 

  28. Hewitt, S.M., Fraizer, G.C., Wu, Y.J., Rauscher, F.J. & Saunders, G.F. Differential function of Wilms' tumor gene WT1 splice isoforms in transcriptional regulation. J. Biol. Chem. 271, 8588–8592 (1996).

    Article  CAS  Google Scholar 

  29. Wang, Z.Y., Qiu, Q.Q., Huang, J., Gurrieri, M. & Deuel, T.F. Products of alternatively spliced transcripts of the Wilms' tumor suppressor gene, WT1, have altered DNA binding specificity and regulate transcription in different ways. Oncogene. 10, 415–422 (1995).

    CAS  PubMed  Google Scholar 

  30. Bickmore, W.A. et al. Alternative splicing within the zinc finger region of the Wilms' tumour WT1 gene modulates DNA binding specificity. Science. 257, 235–237 (1992).

    Article  CAS  Google Scholar 

  31. Larsson, S.H. et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. cell. 81, 391–401 (1995).

    Article  CAS  Google Scholar 

  32. Kent, J., Coriat, A.M., Sharpe, P.T., Hastie, N.D. & van Heyningen, V The evolution of WT1 sequence and expression pattern in vertebrates. Oncogene. 11, 1781–1792 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbaux, S., Niaudet, P., Gubler, MC. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17, 467–470 (1997). https://doi.org/10.1038/ng1297-467

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1297-467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing