Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease

Abstract

Lumbar disc disease (LDD) is caused by degeneration of intervertebral discs of the lumbar spine. One of the most common musculoskeletal disorders1, LDD has strong genetic determinants2,3,4. Using a case-control association study, we identified a functional SNP (1184T → C, resulting in the amino acid substitution I395T) in CILP, which encodes the cartilage intermediate layer protein, that acts as a modulator of LDD susceptibility. CILP was expressed abundantly in intervertebral discs, and its expression increased as disc degeneration progressed. CILP colocalized with TGF-β1 in clustering chondrocytes and their territorial matrices in intervertebral discs. CILP inhibited TGF-β1–mediated induction of cartilage matrix genes through direct interaction with TGF-β1 and inhibition of TGF-β1 signaling. The susceptibility-associated 1184C allele showed increased binding and inhibition of TGF-β1. Therefore, we conclude that the extracellular matrix protein CILP regulates TGF-β signaling and that this regulation has a crucial role in the etiology and pathogenesis of LDD. Our study also adds to the list of connective tissue diseases that are associated with TGF-β.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LD mapping of the susceptibility gene for LDD.
Figure 2: Effects of the LDD-associated SNP (1184T → C) in CILP on TGF-β1–induced expression of aggrecan (a) and type II collagen (b) in rabbit nucleus pulposus cells.
Figure 3: Suppression of the TGF-β signal by CILP in nucleus pulposus cells.
Figure 4: Binding of CILP to TGF-β1 in vitro.
Figure 5: Localization of CILP and TGF-β1 in human lumbar disc tissue.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Andersson, G.B. Epidemiological features of chronic low-back pain. Lancet 354, 581–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Matsui, H. et al. Familial predisposition for lumbar degenerative disc disease. A case-control study. Spine 23, 1029–1034 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Battie, M.C. et al. Similarities in degenerative findings on magnetic resonance images of the lumbar spines of identical twins. J. Bone Joint Surg. Am. 77, 1662–1670 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Sambrook, P.N., MacGregor, A.J. & Spector, T.D. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum. 42, 366–372 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Saal, J.A. & Saal, J.S. Nonoperative treatment of herniated lumbar intervertebral disc with radiculopathy. An outcome study. Spine 14, 431–437 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Annunen, S. et al. An allele of COL9A2 associated with intervertebral disc disease. Science 285, 409–412 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Kimura, T. et al. Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int. Orthop. 20, 177–181 (1996).

    Article  PubMed  Google Scholar 

  8. Watanabe, H., Nakata, K., Kimata, K., Nakanishi, I. & Yamada, Y. Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan. Proc. Natl. Acad. Sci. USA 94, 6943–6947 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Kawaguchi, Y. et al. Association between an aggrecan gene polymorphism and lumbar disc degeneration. Spine 24, 2456–2460 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Freedman, M.L. et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet. 36, 388–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Johnson, K., Farley, D., Hu, S.I. & Terkeltaub, R. One of two chondrocyte-expressed isoforms of cartilage intermediate-layer protein functions as an insulin-like growth factor 1 antagonist. Arthritis Rheum. 48, 1302–1314 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Neptune, E.R. et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kizawa, H. et al. An aspartic acid repeat polymorphism in asporin negatively affects chondrogenesis and increases susceptibility to osteoarthritis. Nat. Genet. 37, 138–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Pattison, S.T., Melrose, J., Ghosh, P. & Taylor, T.K. Regulation of gelatinase-A (MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by Transforming Growth Factor-β1 and insulin like growth factor-I. Cell. Biol. Int. 25, 679–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Baffi, M.O. et al. Conditional deletion of the TGF-β type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev. Biol. 276, 124–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Lorenzo, P., Neame, P., Sommarin, Y. & Heinegard, D. Cloning and deduced amino acid sequence of a novel cartilage protein (CILP) identifies a proform including a nucleotide pyrophosphohydrolase. J. Biol. Chem. 273, 23469–23475 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe, H., Caestecker, M.P. & Yamada, Y. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-β-induced aggrecan gene expression in chondrogenic ATDC5 cells. J. Biol. Chem. 276, 14466–14473 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Young, G.D. & Murphy-Ullrich, J.E. The tryptophan-rich motifs of the thrombospondin type 1 repeats bind VLAL motifs in the latent transforming growth factor-β complex. J. Biol. Chem. 279, 47633–47642 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J., Yan, W. & Setton, L.A. Static compression induces zonal-specific changes in gene expression for extracellular matrix and cytoskeletal proteins in intervertebral disc cells in vitro. Matrix Biol. 24, 573–583 (2004).

    Article  Google Scholar 

  20. Border, W.A. et al. Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease. Nature 360, 361–364 (1992).

    Article  CAS  Google Scholar 

  21. Isaka, Y. et al. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat. Med. 2, 418–423 (1996).

    Article  CAS  Google Scholar 

  22. Tolonen, J. et al. Transforming growth factor beta receptor induction in herniated intervertebral disc tissue: an immunohistochemical study. Eur. Spine J. 10, 172–176 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Serra, R. et al. Expression of a truncated, kinase-defective TGF-β type II receptor in mouse skeletal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J. Cell Biol. 139, 541–552 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, X. et al. TGF-β/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J. Cell Biol. 153, 35–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Mizuguchi, T. et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat. Genet. 36, 855–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Kinoshita, A. et al. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat. Genet. 26, 19–20 (2000).

    Article  CAS  Google Scholar 

  27. Schneiderman, G. et al. Magnetic resonance imaging in the diagnosis of disc degeneration: correlation with discography. Spine 12, 276–281 (1987).

    Article  CAS  Google Scholar 

  28. Chiba, K., Andersson, G.B., Masuda, K. & Thonar, E.J. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine 22, 2885–2893 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Masuda, I., Hamada, J., Haas, A.L., Ryan, L.M. & McCarthy, D.J. A unique ectonucleotide pyrophosphohydrolase associated with porcine chondrocyte-derived vesicles. J. Clin. Invest. 95, 699–704 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the affected individuals for participating in this study; H. Hirabayashi, T. Kono, N. Hosogane, H. Hase, T. Ogura, T. Tanaka, M. Sasahara, A. Sano, H. Ishihara, M. Kanamori and K. Toyoshima for assistance; and Y. Takanashi and T. Matsushima for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Ikegawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Real-time RT-PCR analysis of CILP mRNA in various human tissues and cell lines. (PDF 86 kb)

Supplementary Fig. 2

CILP expression in intervertebral disc tissue from LDD patients. (PDF 62 kb)

Supplementary Fig. 3

CILP expression in intervertebral disc tissues from a normal subject and an LDD patient (Schneiderman's grade 3). (PDF 61 kb)

Supplementary Fig. 4

Lack of NTPPHase activity in COS-7 cells expressing F-CILP. (PDF 75 kb)

Supplementary Fig. 5

Purified F-CILP containing p.I395 or p.T395, visualized by silver staining. (PDF 75 kb)

Supplementary Fig. 6

Effects of the LDD-associated SNP (p.I395T) in N-CILP on TGF-β1-induced expression of the aggrecan and type II collagen genes in rabbit nucleus pulposus cells. (PDF 94 kb)

Supplementary Table 1

Assessment of population stratification. (PDF 61 kb)

Supplementary Table 2

Haplotype analysis of CILP with lumbar disc herniation. (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seki, S., Kawaguchi, Y., Chiba, K. et al. A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37, 607–612 (2005). https://doi.org/10.1038/ng1557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1557

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing