Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PTEN-deficient intestinal stem cells initiate intestinal polyposis

Abstract

Intestinal polyposis, a precancerous neoplasia, results primarily from an abnormal increase in the number of crypts, which contain intestinal stem cells (ISCs). In mice, widespread deletion of the tumor suppressor Phosphatase and tensin homolog (PTEN) generates hamartomatous intestinal polyps with epithelial and stromal involvement. Using this model, we have established the relationship between stem cells and polyp and tumor formation. PTEN helps govern the proliferation rate and number of ISCs and loss of PTEN results in an excess of ISCs. In PTEN-deficient mice, excess ISCs initiate de novo crypt formation and crypt fission, recapitulating crypt production in fetal and neonatal intestine. The PTEN-Akt pathway probably governs stem cell activation by helping control nuclear localization of the Wnt pathway effector β-catenin. Akt phosphorylates β-catenin at Ser552, resulting in a nuclear-localized form in ISCs. Our observations show that intestinal polyposis is initiated by PTEN-deficient ISCs that undergo excessive proliferation driven by Akt activation and nuclear localization of β-catenin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inactivation of PTEN leads to intestinal polyposis.
Figure 2: PTEN expression in the intestine and the impact of PTEN inactivation on the activity of the PI3K-Akt pathway and on the expression of cell cycle regulators.
Figure 3: PTEN-deficient intestinal stem cells were found at the initiation of crypt budding and fission.
Figure 4: PI3K-Akt pathway and its downstream targets operate in ISCs when PTEN is inactivated.
Figure 5: Identification of the Akt phosphorylation site at the C terminus of β-catenin.
Figure 6: Akt activity coincides with nuclear p-β-cat-Ser552 and β-catenin–dependent transcriptional activity in ISCs.
Figure 7: Cells with nuclear p-β-cat-Ser552 initiate crypt fission and budding.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J. & Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Potten, C.S., Owen, G. & Booth, D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci. 115, 2381–2388 (2002).

    CAS  PubMed  Google Scholar 

  6. Radtke, F. & Clevers, H. Self-renewal and cancer of the gut: two sides of a coin. Science 307, 1904–1909 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Brittan, M. & Wright, N.A. Gastrointestinal stem cells. J. Pathol. 197, 492–509 (2002).

    Article  PubMed  Google Scholar 

  8. Bjerknes, M. & Cheng, H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116, 7–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. He, X.C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat. Genet. 36, 1117–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Haramis, A.P. et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303, 1684–1686 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Greaves, L.C. et al. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc. Natl. Acad. Sci. USA 103, 714–719 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Howe, J.R. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28, 184–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Sancho, E., Batlle, E. & Clevers, H. Signaling pathways in intestinal development and cancer. Annu. Rev. Cell Dev. Biol. 20, 695–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. van de Wetering, M. et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Stiles, B., Groszer, M., Wang, S., Jiao, J. & Wu, H. PTENless means more. Dev. Biol. 273, 175–184 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, X.P. et al. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am. J. Hum. Genet. 69, 704–711 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waite, K.A. & Eng, C. BMP2 exposure results in decreased PTEN protein degradation and increased PTEN levels. Hum. Mol. Genet. 12, 679–684 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Tian, Q. et al. Proteomic analysis identifies that 14–3-3ζ interacts with β-catenin and facilitates its activation by Akt. Proc. Natl. Acad. Sci. USA 101, 15370–15375 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Persad, S., Troussard, A.A., McPhee, T.R., Mulholland, D.J. & Dedhar, S. Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J. Cell Biol. 153, 1161–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharma, M., Chuang, W.W. & Sun, Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J. Biol. Chem. 277, 30935–30941 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kühn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  PubMed  Google Scholar 

  24. Potten, C.S. et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71, 28–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Wirtzfeld, D.A., Petrelli, N.J. & Rodriguez-Bigas, M.A. Hamartomatous polyposis syndromes: molecular genetics, neoplastic risk, and surveillance recommendations. Ann. Surg. Oncol. 8, 319–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Vazquez, F. et al. Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J. Biol. Chem. 276, 48627–48630 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Gera, J.F. et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J. Biol. Chem. 279, 2737–2746 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Passegue, E., Wagner, E.F. & Weissman, I.L. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119, 431–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, J. et al. PTEN maintains hematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wasan, H.S. et al. APC in the regulation of intestinal crypt fission. J. Pathol. 185, 246–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Wong, W.M. et al. Histogenesis of human colorectal adenomas and hyperplastic polyps: the role of cell proliferation and crypt fission. Gut 50, 212–217 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Preston, S.L. et al. Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res. 63, 3819–3825 (2003).

    CAS  PubMed  Google Scholar 

  33. Shih, I.M. et al. Top-down morphogenesis of colorectal tumors. Proc. Natl. Acad. Sci. USA 98, 2640–2645 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat. Med. 8, 1153–1160 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Lowry, W.E. et al. Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 19, 1596–1611 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Datta, S.R. et al. 14–3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol. Cell 6, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. van Noort, M., Meeldijk, J., van der Zee, R., Destree, O. & Clevers, H. Wnt signaling controls the phosphorylation status of beta-catenin. J. Biol. Chem. 277, 17901–17905 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Groszer, M. et al. PTEN negatively regulates neural stem cell self-renewal by modulating G0–G1 cell cycle entry. Proc. Natl. Acad. Sci. USA 103, 111–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Yilmaz, O.H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Asai, R., Okano, H. & Yasugi, S. Correlation between Musashi-1 and c-hairy-1 expression and cell proliferation activity in the developing intestine and stomach of both chicken and mouse. Dev. Growth Differ. 47, 501–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Gregorieff, A. et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129, 626–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Huber, A.H., Nelson, W.J. & Weis, W.I. Three-dimensional structure of the Armadillo repeat region of β-catenin. Cell 90, 871–882 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Koike, M. β-catenin shows an overlapping sequence requirement but distinct molecular interactions for its bidirectional passage through nuclear pores. J. Biol. Chem. 279, 34038–34047 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Gottardi, C.J. & Gumbiner, B.M. Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J. Cell Biol. 167, 339–349 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Piedra, J. et al. Regulation of beta-catenin structure and activity by tyrosine phosphorylation. J. Biol. Chem. 276, 20436–20443 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Megy, S. et al. Solution structure of a peptide derived from the oncogenic protein β-catenin in its phosphorylated and nonphosphorylated states. Peptides 26, 227–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Trotman, L.C. et al. Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taurin, S., Sandbo, N., Qin, Y., Browning, D. & Dulin, N.O. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J. Biol. Chem. 281, 9971–9976 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Neaves and R. Krumlauf for scientific support. We thank H. Okano for providing anti-Musashi1 (14-H1) and A. Ouellette for anti-cryptdin; S. Peck and G. Yang for comments on the manuscript; D. di Natale for assistance on manuscript editing; P. Kulesa and D. Stark for imaging assistance; C. Seidel, K. Zueckert-Gaudenz and M. Coleman for assistance in microarray analysis; H. Marshall for technology support and J. Chen for assistance in statistical analysis. L. Li is supported in part by research grant 5-FY05-31 from the March of Dimes Birth Defects Foundation, by grant R01 DK070001 from the National Institute of Diabetes and Digestive and Kidney Diseases and by the Stowers Institute for Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

X.C.H., J.C.G. and L.L. designed the research; X.C.H., T.Y., T.S. and J.C.G. performed the research; Q.T., W.A.T. and L.H. performed the mass spectrometry; R.D., K.S.P-W., M.H., T.J. and T.A.B. provided technical support; H.W. contributed critical reagents; J.C.G., L.M.W. and L.L. wrote the paper.

Corresponding author

Correspondence to Linheng Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Comparison of expression patterns of p-PTEN, p-Akt, 14-3-3ζ, pGSK3β and Musashi1. (PDF 1831 kb)

Supplementary Fig. 2

Detection of Musashi1 expression using an antibody to Musashi1 (clone 14H1). (PDF 380 kb)

Supplementary Fig. 3

Cluster of Musashi1+ cells detected at the initiation site of crypt budding or crypt fission in PTEN mutants. (PDF 367 kb)

Supplementary Fig. 4

Comparison of expression patterns of pβ-cat-Ser552, Top-Gal, p27kip1 and cyclin D1. (PDF 555 kb)

Supplementary Fig. 5

Distribution of cells with pβ-cat-Ser552. (PDF 414 kb)

Supplementary Video 1

PTEN-deficient stem cells initiate crypt fission. Crypts were dissociated from the polyp region of PTEN mutant intestine. Whole-mount staining was performed using two antibodies: anti-β-cat-S552 (green) to recognize stem cells (normal or abnormal) and anti-cryptdin (red) to recognize Paneth cells. One β-cat-S552+ cell was located just above the Paneth cells in the proposed stem cell position; the other dividing β-cat-S552+ cell was found at the tip of the ridge formed between two dividing crypts. (AVI 2092 kb)

Supplementary Video 2

PTEN-deficient stem cells initiate crypt budding. Crypts were dissociated from the polyp region of PTEN mutant intestine. Whole-mount staining was performed using two antibodies: anti-β-cat-S552 (green) to recognize stem cells (normal or abnormal) and anti-cryptdin (red) to recognize Paneth cells. One β-cat-S552+ cell was located just above the Paneth cells in the proposed stem cell position; a cluster of β-cat-S552+ cells was found at the junction between a budding crypt and the edge of the original crypt. (AVI 2168 kb)

Supplementary Methods (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Yin, T., Grindley, J. et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39, 189–198 (2007). https://doi.org/10.1038/ng1928

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing