Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator

Abstract

The protein EP300 and its paralog CREBBP (CREB-binding protein) are ubiquitously expressed transcriptional co-activators and histone acetyl transferases1. The gene EP300 is essential for normal cardiac and neural development, whereas CREBBP is essential for neurulation, hematopoietic differentiation, angiogenesis and skeletal and cardiac development2,3,4,5. Mutations in CREBBP cause Rubinstein-Taybi syndrome, which is characterized by mental retardation, skeletal abnormalities and congenital cardiac defects6,7. The CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2) binds EP300 and CREBBP with high affinity8 and regulates gene transcription8,9,10. Here we show that Cited2−/− embryos die with cardiac malformations, adrenal agenesis, abnormal cranial ganglia and exencephaly. The cardiac defects include atrial and ventricular septal defects, overriding aorta, double-outlet right ventricle, persistent truncus arteriosus and right-sided aortic arches. We find increased apoptosis in the midbrain region and a marked reduction in ErbB3-expressing neural crest cells in mid-embryogenesis. We show that CITED2 interacts with and co-activates all isoforms of transcription factor AP-2 (TFAP2). Transactivation by TFAP2 isoforms is defective in Cited2−/− embryonic fibroblasts and is rescued by ectopically expressed CITED2. As certain Tfap2 isoforms are essential in neural crest, neural tube and cardiac development11,12,13, we propose that abnormal embryogenesis in mice lacking Cited2 results, at least in part, from its role as a Tfap2 co-activator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exencephaly and midbrain apoptosis in Cited2−/− embryos.
Figure 2: Cardiac and aortic arch malformations in Cited2−/− embryos.
Figure 3: Adrenal agenesis.
Figure 4: Abnormal cranial ganglia and neural crest in E10.5 embryos.
Figure 5: CITED2 physically and functionally interacts with TFAP2.

Similar content being viewed by others

References

  1. Goodman, R.H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577 (2000).

    CAS  PubMed  Google Scholar 

  2. Yao, T.P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Oike, Y. et al. Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood 93, 2771–2779 (1999).

    CAS  PubMed  Google Scholar 

  4. Kung, A.L. et al. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 14, 272–277 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Oike, Y. et al. Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum. Mol. Genet. 8, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Petrij, F. et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Stevens, C.A. & Bhakta, M.G. Cardiac abnormalities in the Rubinstein-Taybi syndrome. Am. J. Med. Genet. 59, 346–348 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Bhattacharya, S. et al. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Dev. 13, 64–75 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shioda, T., Fenner, M.H. & Isselbacher, K.J. MSG1 and its related protein MRG1 share a transcription activating domain. Gene 204, 235–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Glenn, D.J. & Maurer, R.A. MRG1 binds to the LIM domain of Lhx2 and may function as a coactivator to stimulate glycoprotein hormone α-subunit gene expression. J. Biol. Chem. 274, 36159–36167 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, J. et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Schorle, H., Meier, P., Buchert, M., Jaenisch, R. & Mitchell, P.J. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Satoda, M. et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nature Genet. 25, 42–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Haydar, T.F., Kuan, C.Y., Flavell, R.A. & Rakic, P. The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb. Cortex 9, 621–626 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Le Douarin, N.M. & Kalcheim, C. The Neural Crest (Cambridge University Press, Cambridge, 1999).

    Book  Google Scholar 

  16. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Britsch, S. et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 12, 1825–1836 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riethmacher, D. et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389, 725–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Erickson, S.L. et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2- and heregulin-deficient mice. Development 124, 4999–5011 (1997).

    CAS  PubMed  Google Scholar 

  20. Juriloff, D.M. & Harris, M.J. Mouse models for neural tube closure defects. Hum. Mol. Genet. 9, 993–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Dunwoodie, S.L., Rodriguez, T.A. & Beddington, R.S.P. Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis. Mech. Dev. 72, 27–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Mitchell, P.J., Timmons, P.M., Hebert, J.M., Rigby, P.W. & Tjian, R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 5, 105–119 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Moser, M., Ruschoff, J. & Buettner, R. Comparative analysis of AP-2α and AP-2β gene expression during murine embryogenesis. Dev. Dyn. 208, 115–124 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Skinner, A. & Hurst, H.C. Transcriptional regulation of the c-erbB-3 gene in human breast carcinoma cell lines. Oncogene 8, 3393–3401 (1993).

    CAS  PubMed  Google Scholar 

  25. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Herrera, E., Samper, E. & Blasco, M.A. Telomere shortening in mTR−/− embryos is associated with failure to close the neural tube. EMBO J. 18, 1172–1181 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilkinson, D.G. Whole mount in situ hybridization of vertebrate embryos. in In Situ Hybridization (ed. Wilkinson, D.G.) 75–83 (IRL, Oxford, 1992).

    Google Scholar 

  28. Bosher, J.M., Totty, N.F., Hsuan, J.J., Williams, T. & Hurst, H.C. A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene 13, 1701–1707 (1996).

    CAS  PubMed  Google Scholar 

  29. Loo, D., Rawson, C., Ernst, T., Shirahata, S. & Barnes, D. Primary and multipassage culture of mouse embryo cells in serum-containing and serum-free media. in Cell Growth and Division: A Practical Approach (ed. Baserga, R.) 17–35 (Oxford University Press, Oxford, 1989).

    Google Scholar 

  30. Ausubel, F. et al. Short Protocols in Molecular Biology 4th ed (John Wiley & Sons, New York, 1995).

    Google Scholar 

Download references

Acknowledgements

We are grateful to R. Gardner and F. Brook for advice and to all those who generously gave us reagents. We thank R. Sumner, J. Corrigan, T. Swingler and C. Ibbitt for excellent technical help. J.J.E. and H.C.H. are supported by the Imperial Cancer Research Fund, J.N.M. by the Medical Research Council and H.F. and D.J.H. by the British Heart Foundation. These studies were funded by a Wellcome Senior Research Fellowship in Clinical Science award to S.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoumo Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bamforth, S., Bragança, J., Eloranta, J. et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet 29, 469–474 (2001). https://doi.org/10.1038/ng768

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing