Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer

Abstract

We have found that EEF1A2, the gene encoding protein elongation factor EEF1A2 (also known as eEF-1α2), is amplified in 25% of primary ovarian tumors and is highly expressed in approximately 30% of ovarian tumors and established cell lines. We have also demonstrated that EEF1A2 has oncogenic properties: it enhances focus formation, allows anchorage-independent growth and decreases the doubling time of rodent fibroblasts. In addition, EEF1A2 expression made NIH3T3 fibroblasts tumorigenic and increased the growth rate of ES-2 ovarian carcinoma cells xenografted in nude mice. Thus, EEF1A2 and the process of protein elongation are likely to be critical in the development of ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amplification of EEF1A2 in ovarian tumors detected by FISH.
Figure 2: Increased expression of EEF1A2 mRNA in ovarian tumors and cell lines a, We readily detected EEF1A2 mRNA in 3 of 11 ovarian tumor samples but not in normal ovary mRNA (N).
Figure 3: Oncogenic properties of EEF1A2.
Figure 4: EEF1A2 expression enhances tumorigenicity.

Similar content being viewed by others

References

  1. Courjal, F. et al. DNA amplifications at 20q13 and MDM2 define distinct subsets of evolved breast and ovarian tumours. Br. J. Cancer 74, 1984–1989 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sonoda, G. et al. Comparative genomic hybridization detects frequent overrepresentation of chromosomal material from 3q26, 8q24, and 20q13 in human ovarian carcinomas. Genes Chromosomes Cancer 20, 320–328 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Diebold, J. et al. 20q13 and cyclin D1 in ovarian carcinomas. Analysis by fluorescence in situ hybridization. J. Pathol. 190, 564–571 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Lund, A., Knudsen, S.M., Vissing, H., Clark, B. & Tommerup, N. Assignment of human elongation factor 1α genes: EEF1A maps to chromosome 6q14 and EEF1A2 to 20q13. 3. Genomics 36, 359–361 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Hershey, J.W. Translational control in mammalian cells. Annu. Rev. Biochem. 60, 717–755 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Condeelis, J. Elongation factor 1 α, translation and the cytoskeleton. Trends Biochem. Sci. 20, 169–170 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, F., Demma, M., Warren, V., Dharmawardhane, S. & Condeelis, J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1α. Nature 347, 494–496 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Shiina, N., Gotoh, Y., Kubomura, N., Iwamatsu, A. & Nishida, E. Microtubule severing by elongation factor 1 α. Science 266, 282–285 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, S., Francoeur, A.M., Liu, S. & Wang, E. Tissue-specific expression in mammalian brain, heart, and muscle of S1, a member of the elongation factor-1 α gene family. J. Biol. Chem. 267, 24064–24068 (1992).

    CAS  PubMed  Google Scholar 

  10. Knudsen, S.M., Frydenberg, J., Clark, B.F. & Leffers, H. Tissue-dependent variation in the expression of elongation factor-1 α isoforms: isolation and characterisation of a cDNA encoding a novel variant of human elongation-factor 1 α. Eur. J. Biochem. 215, 549–554 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Berry, R. et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am. J. Hum. Genet. 67, 82–91 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kjaer, S. et al. Generation and epitope mapping of high-affinity scFv to eukaryotic elongation factor 1A by dual application of phage display. Eur. J. Biochem. 268, 3407–3415 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Land, H., Parada, L.F. & Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Provencher, D.M. et al. Characterization of four novel epithelial ovarian cancer cell lines. In Vitro Cell. Dev. Biol. Anim. 36, 357–361 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Collins, C. et al. Positional cloning of ZNF217 and NABC1: genes amplified at 20q13.2 and overexpressed in breast carcinoma. Proc. Natl Acad. Sci. USA 95, 8703–8708 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Albertson, D.G. et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nature Genet. 25, 144–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Bischoff, J.R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17, 3052–3065 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nonet, G.H. et al. The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells. Cancer Res. 61, 1250–1254 (2001).

    CAS  PubMed  Google Scholar 

  19. Walters, M.R. Newly identified actions of the vitamin D endocrine system. Endocr. Rev. 13, 719–764 (1992).

    CAS  PubMed  Google Scholar 

  20. Shultz, L.D., Sweet, H.O., Davisson, M.T. & Coman, D.R. 'Wasted', a new mutant of the mouse with abnormalities characteristic to ataxia telangiectasia. Nature 297, 402–404 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Chambers, D.M., Peters, J. & Abbott, C.M. The lethal mutation of the mouse wasted (wst) is a deletion that abolishes expression of a tissue-specific isoform of translation elongation factor 1α, encoded by the Eef1a2 gene. Proc. Natl Acad. Sci. USA 95, 4463–4468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Potter, M., Bernstein, A. & Lee, J.M. The wst gene regulates multiple forms of thymocyte apoptosis. Cell. Immunol. 188, 111–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Kerekatte, V. et al. The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int. J. Cancer 64, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Anthony, B., Carter, P. & De Benedetti, A. Overexpression of the proto-oncogene/translation factor 4E in breast-carcinoma cell lines. Int. J. Cancer 65, 858–863 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Sonenberg, N. Translation factors as effectors of cell growth and tumorigenesis. Curr. Opin. Cell Biol. 5, 955–960 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Shen, R., Su, Z.Z., Olsson, C.A. & Fisher, P.B. Identification of the human prostatic carcinoma oncogene PTI-1 by rapid expression cloning and differential RNA display. Proc. Natl Acad. Sci. USA 92, 6778–6782 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Demetrick, D.J. The use of archival frozen tumor tissue imprint specimens for fluorescence in situ hybridization. Mod. Pathol. 9, 133–136 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Al Abadi, R. Austin, J. Hanlon, S. Innocente, S. Lhotak, S. Popovic and E. Seidlitz for help with many of the assays and A. Bernstein, H. Ghosh, J. Hassell, H. Hirte, B. Muller, M. Rozakis-Adcock, G. Singh and P. Whyte for discussion and critical reading of the manuscript. We thank K. Dougherty and H. Blackborrow for secretarial assistance. We acknowledge the sharing of cell lines and information by P. Tonin, T. Hudson, D. Provencher and A.-M. Mes-Masson. This work was supported by funding from the National Cancer Institute of Canada and the Hamilton Regional Cancer Centre Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, N., Murthy, S., Amann, G. et al. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 31, 301–305 (2002). https://doi.org/10.1038/ng904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing