Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret

An Erratum to this article was published on 01 October 2002

This article has been updated

Abstract

Almost 1% of human infants are born with urogenital abnormalities, many of which are linked to irregular connections between the distal ureters and the bladder. During development, ureters migrate by an unknown mechanism from their initial integration site in the Wolffian ducts up to the base of the bladder in a process that we call ureter maturation. Rara−/− Rarb2−/− mice display impaired vitamin A signaling and develop syndromic urogenital malformations similar to those that occur in humans, including renal hypoplasia, hydronephrosis and mega-ureter, abnormalities also seen in mice with mutations in the proto-oncogene Ret. Here we show that ureter maturation depends on formation of the 'trigonal wedge', a newly identified epithelial outgrowth from the base of the Wolffian ducts, and that the distal ureter abnormalities seen in Rara−/− Rarb2−/− and Ret−/− mutant mice are probably caused by a failure of this process. Our studies indicate that formation of the trigonal wedge may be essential for correct insertion of the distal ureters into the bladder, and that these events are mediated by the vitamin A and Ret signaling pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distal ureters in Rara−/− Rarb2−/− mice do not join the bladder.
Figure 2: The three stages of ureter maturation.
Figure 3: Vitamin A is necessary for lateral displacement.
Figure 4: A new domain of Ret signaling in the distal urinary tract.
Figure 5: Ret is required for distal ureter morphogenesis.
Figure 6: Model showing how pleiotropic urogenital malformations may be linked to disruption of vitamin A and Ret signaling.

Similar content being viewed by others

Change history

  • 22 August 2002

    Added link to Supplementary Movie A

Notes

  1. NOTE: There is an error in the PDF and upcoming print version of this article. The article is missing a reference to Web Movie A, which should have appeared on the last line of page 30 together with the reference to Web Fig. A.

References

  1. Scott, J.E. Fetal ureteric reflux. Br. J. Urol. 59, 291–296 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Scott, J.E. & Renwick, M. Antenatal diagnosis of congenital abnormalities in the urinary tract. Results from the Northern Region Fetal Abnormality Survey. Br. J. Urol. 62, 295–300 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Tanagho, E.A. (ed.) Development of the Ureter (Springer, New York, 1981).

    Book  Google Scholar 

  4. Maizels, M. in Campbell's Urology, Vol. 2 (eds Walsh, P., Retik, A., Darracott Vaughan, E. Jr & Wein, A.) 1545–1600 (W.B. Saunders Company, Philadelphia, 1997).

    Google Scholar 

  5. Schlussel, R.N. & Retik, A.B. in Campbell's Urology, Vol. 2 (eds Walsh, P., Retik, A., Darracott Vaughan, E. Jr & Wein, A.) 1814–1857 (W.B. Saunders Company, Philadelphia, 1997).

    Google Scholar 

  6. Wilson, J.G., Roth, C.V. & Warkany, J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am. J. Anat. 92, 189–217 (1953).

    Article  CAS  PubMed  Google Scholar 

  7. Kastner, P., Mark, M. & Chambon, P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Giguere, V., Fawcett, D., Luo, J., Evans, R.M. & Sucov, H.M. Genetic analysis of the retinoid signal. Ann. NY Acad. Sci. 785, 12–22 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Zile, M.H. Function of vitamin A in vertebrate embryonic development. J. Nutr. 131, 705–708 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Wilson, J.G. and Warkany, J. Malformations in the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am. J. Anat. 83, 357–407 (1948).

    Article  CAS  PubMed  Google Scholar 

  11. Mendelsohn, C. et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771 (1994).

    CAS  PubMed  Google Scholar 

  12. Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nature Genet. 27, 74–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Schuchardt, A., D'Agati, V., Pachnis, V. & Costantini, F. Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 122, 1919–1929 (1996).

    CAS  PubMed  Google Scholar 

  15. Srinivas, S. et al. Expression of green fluorescent protein in the ureteric bud of transgenic mice: a new tool for the analysis of ureteric bud morphogenesis. Dev. Genet. 24, 241–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Frazer, J.E. The terminal part of the Wolffian duct. J. Anat. 69, 455–468 (1935).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Meyer, R. Normal and abnormal development of the ureter in the human embryo-a mechanistic consideration. Anat. Rec. 68, 355–371 (1946).

    Article  Google Scholar 

  18. Hutch, J.A. Anatomy and Physiology of the Bladder, Trigone and Urethra (Appleton-Century-Crofts, New York, 1972).

    Google Scholar 

  19. Trupp, M. et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381, 785–789 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Vega, Q.C., Worby, C.A., Lechner, M.S., Dixon, J.E. & Dressler, G.R. Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc. Natl Acad. Sci. USA 93, 10657–10661 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sainio, K. et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124, 4077–4087 (1997).

    CAS  PubMed  Google Scholar 

  22. Jing, S. et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85, 1113–1124 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Sanicola, M. et al. Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. Proc. Natl Acad. Sci. USA 94, 6238–6243 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Treanor, J.J. et al. Characterization of a multicomponent receptor for GDNF. Nature 382, 80–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Mendelsohn, C., Batourina, E., Fung, S., Gilbert, T. & Dodd, J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126, 1139–1148 (1999).

    CAS  PubMed  Google Scholar 

  26. Sanchez, M.P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Vilar, J., Gilbert, T., Moreau, E. & Merlet-Benichou, C. Metanephros organogenesis is highly stimulated by vitamin A derivatives in organ culture. Kidney Int. 49, 1478–1487 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Dolle, P., Ruberte, E., Leroy, P., Morriss-Kay, G. & Chambon, P. Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110, 1133–1151 (1990).

    CAS  PubMed  Google Scholar 

  29. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post- implantation development. Nature Genet. 21, 444–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Schuchardt, A. The role of the c-ret proto-oncogene in the development of the nervous and excretory systems. Thesis, Columbia Univ. (1994).

  31. Srinivas, S., Wu, Z., Chen, C.M., D'Agati, V. & Costantini, F. Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development. Development 126, 1375–1386 (1999).

    CAS  PubMed  Google Scholar 

  32. Ichikawa, I., Kuwayama, F., Pope, J.C., Stephens, F.D. & Miyazaki, Y. Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int. 61, 889–898 (2002).

    Article  PubMed  Google Scholar 

  33. Mackie, G.G. & Stephens, F.D. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J. Urol. 114, 274–280 (1975).

    Article  CAS  PubMed  Google Scholar 

  34. Pope, J.C. IV, Brock, J.W. III, Adams, M.C., Stephens, F.D. & Ichikawa, I. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J. Am. Soc. Nephrol. 10, 2018–2028 (1999).

    PubMed  Google Scholar 

  35. Nishimura, H. et al. Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol. Cell 3, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Miyazaki, Y., Oshima, K., Fogo, A., Hogan, B.L. & Ichikawa, I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Invest. 105, 863–873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kume, T., Deng, K. & Hogan, B.L. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127, 1387–1395 (2000).

    CAS  PubMed  Google Scholar 

  38. Pepicelli, C.V., Kispert, A., Rowitch, D.H. & McMahon, A.P. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev. Biol. 192, 193–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Tang, M.J., Worley, D., Sanicola, M. & Dressler, G.R. The RET–glial cell-derived neurotrophic factor (GDNF) pathway stimulates migration and chemoattraction of epithelial cells. J. Cell. Biol. 142, 1337–1345 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clendenon, J.L., Phillips, C.L., Sandoval, R.M., Fang, S. & Dunn, K.W. Voxx: a PC-based, near real-time volume rendering system for biological microscopy. Am. J. Physiol. Cell Physiol. 282, C213–C218 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Q. Al-Awqati, D. Herzlinger, R. Hen, C. Olsson, U. Grieshammer and G. Martin for discussions and critical reading of the manuscript, and P. Chambon and S. Srinivas for mice. This work was supported by grants from the US National Institutes of Health (to C.L.M., F.D.C. and R.B.) and by a fellowship from the New York Academy of Medicine (to C.L.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy L. Mendelsohn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batourina, E., Choi, C., Paragas, N. et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32, 109–115 (2002). https://doi.org/10.1038/ng952

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng952

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing