Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy genes in immunity

Abstract

In its classical form, autophagy is a pathway by which cytoplasmic constituents, including intracellular pathogens, are sequestered in a double-membrane–bound autophagosome and delivered to the lysosome for degradation. This pathway has been linked to diverse aspects of innate and adaptive immunity, including pathogen resistance, production of type I interferon, antigen presentation, tolerance and lymphocyte development, as well as the negative regulation of cytokine signaling and inflammation. Most of these links have emerged from studies in which genes encoding molecules involved in autophagy are inactivated in immune effector cells. However, it is not yet known whether all of the critical functions of such genes in immunity represent 'classical autophagy' or possible as-yet-undefined autophagolysosome-independent functions of these genes. This review summarizes phenotypes that result from the inactivation of autophagy genes in the immune system and discusses the pleiotropic functions of autophagy genes in immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The autophagy pathway and its regulation.
Figure 2: Immunological processes involving autophagy.
Figure 3: Immunological processes involving autophagy genes.
Figure 4: Possible mechanisms by which alterations in autophagy may be involved in the pathogenesis of human Crohn's disease.

Similar content being viewed by others

References

  1. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mizushima, N., Levine, B., Cuervo, A.M. & Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levine, B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159–162 (2005).

    CAS  PubMed  Google Scholar 

  4. Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–18625 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun, Q. et al. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA 105, 19211–19216 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19, 5360–5372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhong, Y. et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex. Nat. Cell. Biol. 11, 468–476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsunaga,K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11, 385–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Munz, C. Enhancing immunity through autophagy. Annu. Rev. Immunol. 27, 423–449 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Levine, B. & Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev. Immunol. 7, 767–777 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmid, D. & Munz, C. Innate and adaptive immunity through autophagy. Immunity 27, 11–21 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Orvedahl, A. & Levine, B. Eating the enemy within: autophagy in infectious diseases. Cell Death Differ. 16, 57–69 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Kuma, A., Matsui, M. & Mizushima, N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3, 323–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Sanjuan, M.A. et al. Toll-like receptor signaling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Jackson, W.T. et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 3, 861–871 (2005).

    Article  CAS  Google Scholar 

  18. Suzuki, K., Noda, T. & Ohsumi, Y. Interrelationships among Atg proteins during autophagy in Saccharomyces cerevisiae. Yeast 21, 1057–1065 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Matsui, Y. et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 100, 914–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Codogno, P. & Meijer, A.J. Atg5: more than an autophagy factor. Nat. Cell Biol. 8, 1045–1047 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang, X.H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y. et al. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Orvedahl, A. et al. HSV-1 ICP34.5 Confers neurovirulence by targeting the beclin 1 autophagy protein. Cell Host Microbe 1, 23–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Yano, T. et al. Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat. Immunol. 9, 908–916 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, P.K., Hailey, D.W., Mullen, R.T. & Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 105, 20567–20574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, Z. et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4, 458–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martens, S. et al. Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PLoS Pathog. 1, e24 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ling, Y.M. et al. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J. Exp. Med. 203, 2063–2071 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, Y.O., Khaminets, A., Hunn, J.P. & Howard, J.C. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNγ−inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog. 5, e1000288 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gutierrez, M.G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Singh, S.B., Davis, A.S., Taylor, G.A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Harris, J. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27, 505–517 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Taylor, G.A., Feng, C.G. & Sher, A. p47 GTPases: regulators of immunity to intracellular pathogens. Nat. Rev. Immunol. 4, 100–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Papic, N., Hunn, J.P., Pawlowski, N., Zerrahn, J. & Howard, J.C. Inactive and active states of the interferon-inducible resistance GTPase, Irga6, in vivo. J. Biol. Chem. 283, 32143–32151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng, C.G. et al. The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T cell populations by preventing interferon-γ-induced cell death. Nat. Immunol. 9, 1279–1287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Delgado, M. et al. Autophagy and pattern recognition receptors in innate immunity. Immunol. Rev. 227, 189–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu, Y. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Delgado, M.A., Elmaoued, R.A., Davis, A.S., Kyei, G. & Deretic, V. Toll-like receptors control autophagy. EMBO J. 27, 1110–1121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, H.K., Lund, J.M., Ramanathan, B., Mizushima, N. & Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398–1401 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Shi, C.S. & Kehrl, J.H. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 283, 33175–33182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Shui, W. et al. Membrane proteomics of phagosomes suggests a connection to autophagy. Proc. Natl. Acad. Sci. USA 105, 16952–16957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jounai, N. et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA 104, 14050–14055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tal, M.C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl. Acad. Sci. USA 106, 2770–2775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Petrilli, V., Dostert, C., Muruve, D.A. & Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19, 615–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kanneganti, T.D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Lunemann, J.D. & Munz, C. Autophagy in CD4+ T-cell immunity and tolerance. Cell Death Differ. 16, 79–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Vyas, J.M. van,d., V, & Ploegh,H.L. The known unknowns of antigen processing and presentation. Nat. Rev. Immunol. 8, 607–618 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. English, D. et al. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat. Immunol. 10, 480–487 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Schmid, D., Pypaert, M. & Munz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Li, Y. et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 68, 6889–6895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Mellen, M.A., de la Rosa, E.J. & Boya, P. The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. Cell Death Differ. 15, 1279–1290 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Arsov, I. et al. BAC-mediated transgenic expression of fluorescent autophagic protein Beclin 1 reveals a role for Beclin 1 in lymphocyte development. Cell Death Differ. 15, 1385–1395 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Stephenson, L.M. et al. Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes. Autophagy (in the press).

  61. Pua, H.H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y.W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pua, H.H., Guo, J., Komatsu, M. & He, Y.W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182, 4046–4055 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Miller, B.C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2007).

    Article  PubMed  Google Scholar 

  64. Li, C. et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J. Immunol. 177, 5163–5168 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Espert, L. et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest. 116, 2161–2172 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bell, B.D. et al. FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc. Natl. Acad. Sci. USA 105, 16677–16682 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arbour, N. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 signaling pathways have divergent roles in CD8+ T cell-mediated antiviral immunity. J. Exp. Med. 195, 801–810 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Conze, D. et al. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have distinct roles in CD8+ T cell activation. J. Exp. Med. 195, 811–823 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Wei, Y., Pattingre, S., Sinha, S., Bassik, M. & Levine, B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678–688 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Massey, D.C. & Parkes, M. Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn's disease. Autophagy 3, 649–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  74. McCarroll, S.A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 40, 1107–1112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rioux, J.D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kuballa, P., Huett, A., Rioux, J.D., Daly, M.J. & Xavier, R.J. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS ONE 3, e3391 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Vaishnava, S., Behrendt, C.L., Ismail, A.S., Eckmann, L. & Hooper, L.V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. USA 105, 20858–20863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cadwell, K., Patel, K.K., Komatsu, M., Virgin, H.W. & Stappenbeck, T.S. A common role for Atg16L1, Atg5, and Atg7 in small intestinal Paneth cells and Crohn's disease. Autophagy 5, 250–252 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Diehl for medical illustration. Supported by the US National Institutes of Health (R01 CA074730, R01 CA096511, R01 AI054483, R01 AI065982 and U54 AI057160 to H.W.V., and R01 AI151267 and R01 CA109618 to B.L.), the Howard Hughes Medical Institute (B.L.) and the Ellison Medical Foundation (B.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Herbert W Virgin or Beth Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virgin, H., Levine, B. Autophagy genes in immunity. Nat Immunol 10, 461–470 (2009). https://doi.org/10.1038/ni.1726

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing