Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thymic self-reactivity selects natural interleukin 17–producing T cells that can regulate peripheral inflammation

A Corrigendum to this article was published on 01 January 2010

This article has been updated

Abstract

Interleukin 17 (IL-17)-producing CD4+ helper T cells (TH-17 cells) share a developmental relationship with Foxp3+ regulatory T cells (Treg cells). Here we show that a TH-17 population differentiates in the thymus in a manner influenced by recognition of self antigen and by the cytokines IL-6 and transforming growth factor-β (TGF-β). Like previously described TH-17 cells, the TH-17 cells that developed in the thymus expressed the transcription factor RORγt and the IL-23 receptor. These cells also expressed α4β1 integrins and the chemokine receptor CCR6 and were recruited to the lung, gut and liver. In the liver, these cells secreted IL-22 in response to self antigen and mediated host protection during inflammation. Thus, TH-17 cells, like Treg cells, can be selected by self antigens in the thymus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enrichment for IL-17+ cells in peripheral lymphoid organs of DTg mice.
Figure 2: TH-17 cells develop in the thymus.
Figure 3: Thymic TH-17 development depends on basal production of IL-6 and TGF-β, whereas IFN-γ is inhibitory during peripheral activation.
Figure 4: TH-17 cells from DTg mice express CD44, ICOS but not PD-1.
Figure 5: TH-17 cells from DTg mice express CCR6 and α4β1 integrins and show enrichment in the lamina propria, liver, lung and Peyer's patches.
Figure 6: TH-17 cells from DTg mice produce IL-22 that promotes hepatocyte survival during inflammation.
Figure 7: TH-17 cells in lymph nodes and thymi of wild-type mice have a phenotype identical to that of TH-17 cells in DTg mice.

Similar content being viewed by others

Change history

  • 05 October 2009

    NOTE: In the version of this article initially published, two relevant papers are not cited. The following brief description of the findings of these papers has been added to the end of the fourth full paragraph on page 1131, and the citations below are now included at the end of the reference list: “Our observations follow the identification in human thymi and umbilical cord blood of CD3+CD4+CD161+ cells that express RORγt, IL-23R and CCR6 and produce IL-17 after activation and stimulation with IL-1 and IL-23 (ref. 54). This work suggested that thymus-derived cells could be precursors of peripheral TH-17 cells in humans, an idea supported by the finding that CD161+IL-17+ cells can be isolated from the intestinal tissue of patients with Crohn's disease55.” 54. Cosmi, L. et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med. 205, 1903–1916 (2008). 55. Kleinschek. M.A. et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med. 206, 525–534 (2009). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  Google Scholar 

  2. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  Google Scholar 

  3. Harrington, L.E., Mangan, P.R. & Weaver, C.T. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr. Opin. Immunol. 18, 349–356 (2006).

    Article  CAS  Google Scholar 

  4. Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  Google Scholar 

  5. Ivanov, I.I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  6. Yang, X.O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008).

    Article  CAS  Google Scholar 

  7. Zenewicz, L.A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    Article  CAS  Google Scholar 

  8. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  9. Bowman, E.P., Chackerian, A.A. & Cua, D.J. Rationale and safety of anti-interleukin-23 and anti-interleukin-17A therapy. Curr. Opin. Infect. Dis. 19, 245–252 (2006).

    Article  CAS  Google Scholar 

  10. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  11. Mangan, P.R. et al. Transforming growth factor-beta induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  12. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  13. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+CD25+CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    Article  CAS  Google Scholar 

  14. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  Google Scholar 

  15. Kryczek, I. et al. Cutting edge: opposite effects of IL-1 and IL-2 on the regulation of IL-17+ T cell pool IL-1 subverts IL-2-mediated suppression. J. Immunol. 179, 1423–1426 (2007).

    Article  CAS  Google Scholar 

  16. Xu, L., Kitani, A., Fuss, I. & Strober, W. Cutting edge: regulatory T cells induce CD4+CD25Foxp3 T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J. Immunol. 178, 6725–6729 (2007).

    Article  CAS  Google Scholar 

  17. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  Google Scholar 

  18. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  Google Scholar 

  19. Zhang, F., Meng, G. & Strober, W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17–producing T cells. Nat. Immunol. 9, 1297–1306 (2008).

    Article  CAS  Google Scholar 

  20. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  Google Scholar 

  21. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  22. Hsieh, C.S., Zheng, Y., Liang, Y., Fontenot, J.D. & Rudensky, A.Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol. 7, 401–410 (2006).

    Article  CAS  Google Scholar 

  23. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  Google Scholar 

  24. Cheroutre, H. Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu. Rev. Immunol. 22, 217–246 (2004).

    Article  CAS  Google Scholar 

  25. Xiong, N. & Raulet, D.H. Development and selection of γδ T cells. Immunol. Rev. 215, 15–31 (2007).

    Article  CAS  Google Scholar 

  26. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  Google Scholar 

  27. Oehen, S., Feng, L., Xia, Y., Surh, C.D. & Hedrick, S.M. Antigen compartmentation and T helper cell tolerance induction. J. Exp. Med. 183, 2617–2626 (1996).

    Article  CAS  Google Scholar 

  28. Grossman, Z. & Paul, W.E. Autoreactivity, dynamic tuning and selectivity. Curr. Opin. Immunol. 13, 687–698 (2001).

    Article  CAS  Google Scholar 

  29. Monroe, R.J. et al. RAG2:GFP knockin mice reveal novel aspects of RAG2 expression in primary and peripheral lymphoid tissues. Immunity 11, 201–212 (1999).

    Article  CAS  Google Scholar 

  30. van Santen, H.M., Benoist, C. & Mathis, D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J. Exp. Med. 200, 1221–1230 (2004).

    Article  CAS  Google Scholar 

  31. Li, M.O., Wan, Y.Y. & Flavell, R.A. T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).

    Article  CAS  Google Scholar 

  32. Veldhoen, M., Hocking, R.J., Flavell, R.A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    Article  CAS  Google Scholar 

  33. Gorelik, L. & Flavell, R.A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    Article  CAS  Google Scholar 

  34. Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 737–746 (2005).

    Article  CAS  Google Scholar 

  35. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  36. Yoshinaga, S.K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  Google Scholar 

  37. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 2, 141–151 (1999).

    Article  Google Scholar 

  38. Ley, K., Laudanna, C., Cybulsky, M.I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  Google Scholar 

  39. Reboldi, A. et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

    Article  CAS  Google Scholar 

  40. Schutyser, E., Struyf, S. & Van Damme, J. The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 14, 409–426 (2003).

    Article  CAS  Google Scholar 

  41. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  Google Scholar 

  42. McGeachy, M.J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    Article  CAS  Google Scholar 

  43. Arvelo, M.B. et al. A20 protects mice from D-galactosamine/lipopolysaccharide acute toxic lethal hepatitis. Hepatology 35, 535–543 (2002).

    Article  CAS  Google Scholar 

  44. Michel, M.L. et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl. Acad. Sci. USA 105, 19845–19850 (2008).

    Article  CAS  Google Scholar 

  45. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  Google Scholar 

  46. Hayday, A. & Tigelaar, R. Immunoregulation in the tissues by γδ T cells. Nat. Rev. Immunol. 3, 233–242 (2003).

    Article  CAS  Google Scholar 

  47. Lahn, M. et al. Negative regulation of airway responsiveness that is dependent on γδ T cells and independent of αβ T cells. Nat. Med. 5, 1150–1156 (1999).

    Article  CAS  Google Scholar 

  48. Jahng, A.W. et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1789–1799 (2001).

    Article  CAS  Google Scholar 

  49. Roark, C.L., Simonian, P.L., Fontenot, A.P., Born, W.K. & O'Brien, R.L. γδ T cells: an important source of IL-17. Curr. Opin. Immunol. 20, 353–357 (2008).

    Article  CAS  Google Scholar 

  50. Chien, Y.H. & Konigshofer, Y. Antigen recognition by γδ T cells. Immunol. Rev. 215, 46–58 (2007).

    Article  CAS  Google Scholar 

  51. Yang, X.O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    Article  CAS  Google Scholar 

  52. Aggarwal, S., Xie, M.H., Maruoka, M., Foster, J. & Gurney, A.L. Acinar cells of the pancreas are a target of interleukin-22. J. Interferon Cytokine Res. 21, 1047–1053 (2001).

    Article  CAS  Google Scholar 

  53. Ito, T. et al. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28, 870–880 (2008).

    Article  CAS  Google Scholar 

  54. Cosmi, L. et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med. 205, 1903–1916 (2008).

    Article  CAS  Google Scholar 

  55. Kleinschek, M.A. et al. Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J. Exp. Med. 206, 525–534 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Hedrick (University of California, San Diego) and S. Oehan (University Hospital, Zurich) for AND- and PCC-transgenic mice; F. Alt (The Children's Hospital and Harvard Medical School) and D. Schatz (Yale University School of Medicine) for RAG2:GFP mice; H. van Santen, D. Mathis and C. Benoist (Joslin Diabetes Center and Harvard Medical School) for TA.TIM mice; L. Bockenstedt (Yale University School of Medicine) for CD1d-deficient mice; E. Marks and other members of the Craft laboratory for discussions; L. Zenewicz and E. Espluges for advice; and R. Medzhitov and S. Kaech for critical reading of the manuscript. Supported by the US National Institutes of Heath (AR40072, AR44076, AI56219 and AR053495; and 5T32GM07205 to B.R.M.), the Arthritis Foundation, Rheuminations and the Connecticut chapter of the Lupus Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.R.M. and J.C. designed experiments; B.R.M., H.N.N., J.Y. C., A.C.P. and J.M.O. did the experiments; B.R.M., H.N.N., J.Y.C., R.A.F. and J.C. analyzed the data; and B.R.M. and J.C. wrote the paper.

Corresponding author

Correspondence to Joe Craft.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–2 (PDF 1112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, B., Nowyhed, H., Choi, JY. et al. Thymic self-reactivity selects natural interleukin 17–producing T cells that can regulate peripheral inflammation. Nat Immunol 10, 1125–1132 (2009). https://doi.org/10.1038/ni.1783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing