Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms maintaining peripheral tolerance

Abstract

The presentation of self-peptide–MHC complexes in the periphery to potentially autoreactive T cells that have escaped negative selection in the thymus poses an important problem to the immune system. In this review, I discuss data that reveal barriers preventing peripheral T cell recognition of self-peptide–MHC complexes, as well as the physiological mechanisms that ensure the elimination or functional inactivation (anergy) of T cells that do come to recognize self-peptide–MHC and threaten the health of the individual.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DC maturation model.

Marina Corral

Figure 2: Control of T cell responsiveness by DCs.

Marina Corral

Similar content being viewed by others

References

  1. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  2. Torkamani, A., Topol, E.J. & Schork, N.J. Pathway analysis of seven common diseases assessed by genome-wide association. Genomics 92, 265–272 (2008).

    CAS  PubMed  Google Scholar 

  3. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    CAS  PubMed  Google Scholar 

  4. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    CAS  PubMed  Google Scholar 

  5. von Boehmer, H. & Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nat. Immunol. 11, 14–20 (2010).

    CAS  PubMed  Google Scholar 

  6. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2010).

    CAS  PubMed  Google Scholar 

  7. Liu, G.Y. et al. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3, 407–415 (1995).

    CAS  PubMed  Google Scholar 

  8. Goverman, J. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72, 551–560 (1993).

    CAS  PubMed  Google Scholar 

  9. Goverman, J. Tolerance and autoimmunity in TCR transgenic mice specific for myelin basic protein. Immunol. Rev. 169, 147–159 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zehn, D. & Bevan, M.J. T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25, 261–270 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Henrickson, S.E. et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat. Immunol. 9, 282–291 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lammermann, T. & Sixt, M. The microanatomy of T-cell responses. Immunol. Rev. 221, 26–43 (2008).

    PubMed  Google Scholar 

  13. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  PubMed  Google Scholar 

  14. Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    CAS  PubMed  Google Scholar 

  15. Celli, S., Lemaitre, F. & Bousso, P. Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27, 625–634 (2007).

    CAS  PubMed  Google Scholar 

  16. Ohashi, P.S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    CAS  PubMed  Google Scholar 

  17. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    CAS  PubMed  Google Scholar 

  18. Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    CAS  PubMed  Google Scholar 

  19. Austrup, F. et al. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 385, 81–83 (1997).

    CAS  PubMed  Google Scholar 

  20. Reinhardt, R.L., Bullard, D.C., Weaver, C.T. & Jenkins, M.K. Preferential accumulation of antigen-specific effector CD4 T cells at an antigen injection site involves CD62E-dependent migration but not local proliferation. J. Exp. Med. 197, 751–762 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Masopust, D. et al. Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J. Immunol. 172, 4875–4882 (2004).

    CAS  PubMed  Google Scholar 

  22. Bianchi, T. et al. Maintenance of peripheral tolerance through controlled tissue homing of antigen-specific T cells in K14-mOVA mice. J. Immunol. 182, 4665–4674 (2009).

    CAS  PubMed  Google Scholar 

  23. Bursch, L.S., Rich, B.E. & Hogquist, K.A. Langerhans cells are not required for the CD8 T cell response to epidermal self-antigens. J. Immunol. 182, 4657–4664 (2009).

    CAS  PubMed  Google Scholar 

  24. Mrass, P. & Weninger, W. Immune cell migration as a means to control immune privilege: lessons from the CNS and tumors. Immunol. Rev. 213, 195–212 (2006).

    PubMed  Google Scholar 

  25. Lee, J.W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8, 181–190 (2007).

    CAS  PubMed  Google Scholar 

  26. Ackerman, A.L., Giodini, A. & Cresswell, P. A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity 25, 607–617 (2006).

    CAS  PubMed  Google Scholar 

  27. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–780 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Laufer, T.M., DeKoning, J., Markowitz, J.S., Lo, D. & Glimcher, L.H. Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383, 81–85 (1996).

    CAS  PubMed  Google Scholar 

  30. Laufer, T.M., Fan, L. & Glimcher, L.H. Self-reactive T cells selected on thymic cortical epithelium are polyclonal and are pathogenic in vivo. J. Immunol. 162, 5078–5084 (1999).

    CAS  PubMed  Google Scholar 

  31. Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Luckashenak, N. et al. Constitutive crosspresentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo. Immunity 28, 521–532 (2008).

    CAS  PubMed  Google Scholar 

  33. Kerksiek, K.M., Niedergang, F., Chavrier, P., Busch, D.H. & Brocker, T. Selective Rac1 inhibition in dendritic cells diminishes apoptotic cell uptake and cross-presentation in vivo. Blood 105, 742–749 (2005).

    CAS  PubMed  Google Scholar 

  34. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255 (1999).

    CAS  PubMed  Google Scholar 

  35. Rothlin, C.V., Ghosh, S., Zuniga, E.I., Oldstone, M.B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    CAS  PubMed  Google Scholar 

  36. Lu, Q. & Lemke, G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293, 306–311 (2001).

    CAS  PubMed  Google Scholar 

  37. Wallet, M.A. et al. MerTK is required for apoptotic cell-induced T cell tolerance. J. Exp. Med. 205, 219–232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pasare, C. & Medzhitov, R. Toll-dependent control mechanisms of CD4 T cell activation. Immunity 21, 733–741 (2004).

    CAS  PubMed  Google Scholar 

  39. Jiang, A. et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27, 610–624 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Morelli, A.E. & Thomson, A.W. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol. 7, 610–621 (2007).

    CAS  PubMed  Google Scholar 

  41. Lo, D., Burkly, L.C., Flavell, R.A., Palmiter, R.D. & Brinster, R.L. Tolerance in transgenic mice expressing class II major histocompatibility complex on pancreatic acinar cells. J. Exp. Med. 170, 87–104 (1989).

    CAS  PubMed  Google Scholar 

  42. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    CAS  PubMed  Google Scholar 

  43. Adler, A.J. et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J. Exp. Med. 187, 1555–1564 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kurts, C. et al. CD4+ T cell help impairs CD8+ T cell deletion induced by cross-presentation of self-antigens and favors autoimmunity. J. Exp. Med. 186, 2057–2062 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kurts, C., Kosaka, H., Carbone, F.R., Miller, J.F. & Heath, W.R. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186, 239–245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Knoechel, B., Lohr, J., Kahn, E. & Abbas, A.K. The link between lymphocyte deficiency and autoimmunity: roles of endogenous T and B lymphocytes in tolerance. J. Immunol. 175, 21–26 (2005).

    CAS  PubMed  Google Scholar 

  47. Vanasek, T.L., Nandiwada, S.L., Jenkins, M.K. & Mueller, D.L. CD25+Foxp3+ regulatory T cells facilitate CD4+ T cell clonal anergy induction during the recovery from lymphopenia. J. Immunol. 176, 5880–5889 (2006).

    CAS  PubMed  Google Scholar 

  48. Brown, I.E., Blank, C., Kline, J., Kacha, A.K. & Gajewski, T.F. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J. Immunol. 177, 4521–4529 (2006).

    CAS  PubMed  Google Scholar 

  49. Tanchot, C., Barber, D.L., Chiodetti, L. & Schwartz, R.H. Adaptive tolerance of CD4+ T cells in vivo: multiple thresholds in response to a constant level of antigen presentation. J. Immunol. 167, 2030–2039 (2001).

    CAS  PubMed  Google Scholar 

  50. Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol. 22, 765–787 (2004).

    CAS  PubMed  Google Scholar 

  51. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    CAS  PubMed  Google Scholar 

  52. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    CAS  PubMed  Google Scholar 

  53. Davey, G.M. et al. Peripheral deletion of autoreactive CD8 T cells by cross presentation of self-antigen occurs by a Bcl-2-inhibitable pathway mediated by Bim. J. Exp. Med. 196, 947–955 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Strasser, A., Harris, A.W., Huang, D.C., Krammer, P.H. & Cory, S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 14, 6136–6147 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Weant, A.E. et al. Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity 28, 218–230 (2008).

    CAS  PubMed  Google Scholar 

  56. Hutcheson, J. et al. Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity 28, 206–217 (2008).

    CAS  PubMed  Google Scholar 

  57. Hughes, P.D. et al. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 28, 197–205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Barron, L., Knoechel, B., Lohr, J. & Abbas, A.K. Cutting edge: contributions of apoptosis and anergy to systemic T cell tolerance. J. Immunol. 180, 2762–2766 (2008).

    CAS  PubMed  Google Scholar 

  59. Parish, I.A. et al. The molecular signature of CD8+ T cells undergoing deletional tolerance. Blood 113, 4575–4585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Safford, M. et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol. 6, 472–480 (2005).

    CAS  PubMed  Google Scholar 

  61. Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109, 719–731 (2002).

    CAS  PubMed  Google Scholar 

  62. Mondino, A. & Mueller, D.L. mTOR at the crossroads of T cell proliferation and tolerance. Semin. Immunol. 19, 162–172 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. DeSilva, D.R., Urdahl, K.B. & Jenkins, M.K. Clonal anergy is induced in vitro by T cell receptor occupancy in the absence of proliferation. J. Immunol. 147, 3261–3267 (1991).

    CAS  PubMed  Google Scholar 

  64. Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H. & Allison, J.P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

    CAS  PubMed  Google Scholar 

  65. Powell, J.D., Lerner, C.G. & Schwartz, R.H. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J. Immunol. 162, 2775–2784 (1999).

    CAS  PubMed  Google Scholar 

  66. Colombetti, S., Benigni, F., Basso, V. & Mondino, A. Clonal anergy is maintained independently of T cell proliferation. J. Immunol. 169, 6178–6186 (2002).

    CAS  PubMed  Google Scholar 

  67. Finck, B.K., Linsley, P.S. & Wofsy, D. Treatment of murine lupus with CTLA4Ig. Science 265, 1225–1227 (1994).

    CAS  PubMed  Google Scholar 

  68. Racke, M.K. et al. Distinct roles for B7–1 (CD-80) and B7–2 (CD-86) in the initiation of experimental allergic encephalomyelitis. J. Clin. Invest. 96, 2195–2203 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Miller, S.D. et al. Blockade of CD28/B7–1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3, 739–745 (1995).

    CAS  PubMed  Google Scholar 

  70. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  71. Walunas, T.L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    CAS  PubMed  Google Scholar 

  72. Krummel, M.F. & Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    CAS  PubMed  Google Scholar 

  73. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  74. Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  75. Fife, B.T., Griffin, M.D., Abbas, A.K., Locksley, R.M. & Bluestone, J.A. Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist. J. Clin. Invest. 116, 2252–2261 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kearney, E.R. et al. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol. 155, 1032–1036 (1995).

    CAS  PubMed  Google Scholar 

  77. Perez, V.L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    CAS  PubMed  Google Scholar 

  78. Vanasek, T.L., Khoruts, A., Zell, T. & Mueller, D.L. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness. J. Immunol. 167, 5636–5644 (2001).

    CAS  PubMed  Google Scholar 

  79. Greenwald, R.J., Boussiotis, V.A., Lorsbach, R.B., Abbas, A.K. & Sharpe, A.H. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  80. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    CAS  PubMed  Google Scholar 

  81. Eggena, M.P. et al. Cooperative roles of CTLA-4 and regulatory T cells in tolerance to an islet cell antigen. J. Exp. Med. 199, 1725–1730 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    CAS  PubMed  Google Scholar 

  83. Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Keir, M.E. et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med. 203, 883–895 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fife, B.T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fife, B.T. et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat. Immunol. advance online publication, doi:10.1038/ni.1790 (27 September 2009).

  87. Probst, H.C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat. Immunol. 6, 280–286 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the US National Institutes of Health (P01 AI35296 and R01 AI080764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L Mueller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, D. Mechanisms maintaining peripheral tolerance. Nat Immunol 11, 21–27 (2010). https://doi.org/10.1038/ni.1817

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing