Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production

A Corrigendum to this article was published on 01 July 2010

This article has been updated

Abstract

To identify genes and mechanisms involved in humoral immunity, we did a mouse genetic screen for mutations that do not affect the first wave of antibody to immunization but disrupt response maturation and persistence. The first two mutants identified had loss-of-function mutations in the gene encoding a previously obscure member of a family of Rho-Rac GTP-exchange factors, DOCK8. DOCK8-mutant B cells were unable to form marginal zone B cells or to persist in germinal centers and undergo affinity maturation. Dock8 mutations disrupted accumulation of the integrin ligand ICAM-1 in the B cell immunological synapse but did not alter other aspects of B cell antigen receptor signaling. Humoral immunodeficiency due to Dock8 mutation provides evidence that organization of the immunological synapse is critical for signaling the survival of B cell subsets required for long-lasting immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of two independent, noncomplementing N-ethyl-N-nitrosourea–mutant mouse strains with humoral immunodeficiency characterized by failure to sustain a primary immune response and failure of maturation of the antibody response.
Figure 2: Analysis of splenic and peritoneal lymphocyte subsets.
Figure 3: Independent Dock8 mutations in pri and cpm mouse strains.
Figure 4: Dock8 mutation causes an intrinsic defect in GC B cells.
Figure 5: DOCK8-mutant B cells undergo normal T cell–dependent activation, switching and initial differentiation into GC cells in vivo.
Figure 6: Intrinsic failure of DOCK8-mutant GC B cells to persist or undergo affinity maturation.
Figure 7: Dock8 mutations disrupt the formation of the B cell immunological synapse but not other aspects of signaling through the B cell antigen receptor.

Similar content being viewed by others

Change history

  • 04 December 2009

    In the version of this article initially published, the third author's name is missing the middle initial. The correct name is Andy L Johnson. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Conley, M.E. et al. Primary B cell immunodeficiencies: comparisons and contrasts. Annu. Rev. Immunol. 27, 199–227 (2009).

    Article  CAS  Google Scholar 

  2. Park, M.A., Li, J.T., Hagan, J.B., Maddox, D.E. & Abraham, R.S. Common variable immunodeficiency: a new look at an old disease. Lancet 372, 489–502 (2008).

    Article  Google Scholar 

  3. Schaffer, A.A., Salzer, U., Hammarstrom, L. & Grimbacher, B. Deconstructing common variable immunodeficiency by genetic analysis. Curr. Opin. Genet. Dev. 17, 201–212 (2007).

    Article  Google Scholar 

  4. van Zelm, M.C. et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med. 354, 1901–1912 (2006).

    Article  CAS  Google Scholar 

  5. Tuveson, D.A., Carter, R.H., Soltoff, S.P. & Fearon, D.T. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 260, 986–989 (1993).

    Article  CAS  Google Scholar 

  6. Castigli, E. et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat. Genet. 37, 829–834 (2005).

    Article  CAS  Google Scholar 

  7. Salzer, U. et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat. Genet. 37, 820–828 (2005).

    Article  CAS  Google Scholar 

  8. Grimbacher, B. et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4, 261–268 (2003).

    Article  CAS  Google Scholar 

  9. Wehr, C. et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood 111, 77–85 (2008).

    Article  CAS  Google Scholar 

  10. MacLennan, I.C.M. et al. Extrafollicular antibody responses. Immunol. Rev. 194, 8–18 (2003).

    Article  CAS  Google Scholar 

  11. Hande, S., Notidis, E. & Manser, T. Bcl-2 obstructs negative selection of autoreactive, hypermutated antibody V regions during memory B cell development. Immunity 8, 189–198 (1998).

    Article  CAS  Google Scholar 

  12. Naparstek, Y. et al. A single germline VH gene segment of normal A/J mice encodes autoantibodies characteristic of systemic lupus erythematosus. J. Exp. Med. 164, 614–626 (1986).

    Article  CAS  Google Scholar 

  13. Cote, J.-F. & Vuori, K. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol. 17, 383–393 (2007).

    Article  CAS  Google Scholar 

  14. Meller, N., Merlot, S. & Guda, C. CZH proteins: a new family of Rho-GEFs. J. Cell Sci. 118, 4937–4946 (2005).

    Article  CAS  Google Scholar 

  15. Ruusala, A. & Aspenstrom, P. Isolation and characterisation of DOCK8, a member of the DOCK180-related regulators of cell morphology. FEBS Lett. 572, 159–166 (2004).

    Article  CAS  Google Scholar 

  16. Yang, J., Zhang, Z., Roe, S.M., Marshall, C.J. & Barford, D. Activation of Rho GTPases by DOCK exchange factors is mediated by a nucleotide sensor. Science 325, 1398–1402 (2009).

    Article  CAS  Google Scholar 

  17. Phan, T.G. et al. B cell receptor-independent stimuli trigger immunoglobulin (Ig) class switch recombination and production of IgG autoantibodies by anergic self-reactive B cells. J. Exp. Med. 197, 845–860 (2003).

    Article  CAS  Google Scholar 

  18. Paus, D. et al. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 203, 1081–1091 (2006).

    Article  CAS  Google Scholar 

  19. Phan, T.G. et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J. Exp. Med. 203, 2419–2424 (2006).

    Article  CAS  Google Scholar 

  20. Kam-Morgan, L.N. et al. High-resolution mapping of the HyHEL-10 epitope of chicken lysozyme by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA 90, 3958–3962 (1993).

    Article  CAS  Google Scholar 

  21. Padlan, E.A. et al. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc. Natl. Acad. Sci. USA 86, 5938–5942 (1989).

    Article  CAS  Google Scholar 

  22. Hasbold, J., Corcoran, L.M., Tarlinton, D.M., Tangye, S.G. & Hodgkin, P.D. Evidence from the generation of immunoglobulin G-secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nat. Immunol. 5, 55–63 (2004).

    Article  CAS  Google Scholar 

  23. Chan, T.D. et al. Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. J. Immunol. 183, 3139–3149 (2009).

    Article  CAS  Google Scholar 

  24. Li, Y., Li, H., Yang, F., Smith-Gill, S.J. & Mariuzza, R.A. X-ray snapshots of the maturation of an antibody response to a protein antigen. Nat. Struct. Biol. 10, 482–488 (2003).

    Article  CAS  Google Scholar 

  25. Carrasco, Y.R., Fleire, S.J., Cameron, T., Dustin, M.L. & Batista, F.D. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity 20, 589–599 (2004).

    Article  CAS  Google Scholar 

  26. Qi, H., Cannons, J.L., Klauschen, F., Schwartzberg, P.L. & Germain, R.N. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  Google Scholar 

  27. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196, 65–75 (2002).

    Article  CAS  Google Scholar 

  28. Arana, E. et al. Activation of the small GTPase Rac2 via the B cell receptor regulates B cell adhesion and immunological-synapse formation. Immunity 28, 88–99 (2008).

    Article  CAS  Google Scholar 

  29. Croker, B.A. et al. The Rac2 guanosine triphosphatase regulates B lymphocyte antigen receptor responses and chemotaxis and is required for establishment of B-1a and marginal zone B lymphocytes. J. Immunol. 168, 3376–3386 (2002).

    Article  CAS  Google Scholar 

  30. Doody, G.M. et al. Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation. Nat. Immunol. 2, 542–547 (2001).

    Article  CAS  Google Scholar 

  31. Tedford, K. et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat. Immunol. 2, 548–555 (2001).

    Article  CAS  Google Scholar 

  32. Walmsley, M.J. et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science 302, 459–462 (2003).

    Article  CAS  Google Scholar 

  33. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).

    Article  CAS  Google Scholar 

  34. Nombela-Arrieta, C. et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase γ during T and B lymphocyte homing. Immunity 21, 429–441 (2004).

    Article  CAS  Google Scholar 

  35. Wang, Y. et al. The physiologic role of CD19 cytoplasmic tyrosines. Immunity 17, 501–514 (2002).

    Article  CAS  Google Scholar 

  36. Rickert, R.C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  Google Scholar 

  37. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).

    Article  CAS  Google Scholar 

  38. Wang, Y. & Carter, R.H. CD19 regulates B cell maturation, proliferation, and positive selection in the FDC zone of murine splenic germinal centers. Immunity 22, 749–761 (2005).

    Article  CAS  Google Scholar 

  39. Anzelon, A.N., Wu, H. & Rickert, R.C. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat. Immunol. 4, 287–294 (2003).

    Article  CAS  Google Scholar 

  40. Depoil, D. et al. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat. Immunol. 9, 63–72 (2008).

    Article  CAS  Google Scholar 

  41. Fujimoto, M. et al. CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 13, 47–57 (2000).

    Article  CAS  Google Scholar 

  42. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. published online doi:10.1056/NEJMoa0905506 (23 September 2009).

  43. Martin, F. & Kearney, J.F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12, 39–49 (2000).

    Article  CAS  Google Scholar 

  44. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  Google Scholar 

  45. Clayton, E. et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    Article  CAS  Google Scholar 

  46. Lu, T.T. & Cyster, J.G. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297, 409–412 (2002).

    Article  CAS  Google Scholar 

  47. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J.V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat. Immunol. 1, 31–36 (2000).

    Article  CAS  Google Scholar 

  48. Koopman, G. et al. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J. Immunol. 152, 3760–3767 (1994).

    CAS  PubMed  Google Scholar 

  49. Victoratos, P. et al. FDC-specific functions of p55TNFR and IKK2 in the development of FDC networks and of antibody responses. Immunity 24, 65–77 (2006).

    Article  CAS  Google Scholar 

  50. Pulendran, B., Kannourakis, G., Nouri, S., Smith, K.G. & Nossal, G.J. Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. Nature 375, 331–334 (1995).

    Article  CAS  Google Scholar 

  51. Shokat, K.M. & Goodnow, C.C. Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature 375, 334–338 (1995).

    Article  CAS  Google Scholar 

  52. Lucas, B. & Germain, R.N. Opening a window on thymic positive selection: developmental changes in the influence of cosignaling by integrins and CD28 on selection events induced by TCR engagement. J. Immunol. 165, 1889–1895 (2000).

    Article  CAS  Google Scholar 

  53. Kishimoto, H. et al. Differing roles for B7 and intercellular adhesion molecule-1 in negative selection of thymocytes. J. Exp. Med. 184, 531–537 (1996).

    Article  CAS  Google Scholar 

  54. Scholer, A., Hugues, S., Boissonnas, A., Fetler, L. & Amigorena, S. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28, 258–270 (2008).

    Article  CAS  Google Scholar 

  55. Horikawa, K. et al. Enhancement and suppression of signaling by the conserved tail of IgG memory-type B cell antigen receptors. J. Exp. Med. 204, 759–769 (2007).

    Article  CAS  Google Scholar 

  56. Jun, J.E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751–762 (2003).

    Article  CAS  Google Scholar 

  57. Reif, K. et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94–99 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Townsend, D. Howard, H. Ferry and C. Gillespie for technical assistance; the staff of the Australian National University Bioscience Division and Oxford Biomedical Services Unit for animal husbandry; the Australian Phenomics Facility genotyping and mapping team for genetic analysis, R. Rigby, B. Balakishnan and L. Beaton (Australian National University) for advice and reagents; J. Cannons and P. Schwartzberg (National Institutes of Health) for B cell–T cell conjugation methods and SAP-deficient mice; C. Jenne, S. Watson and T. Pham (University of California, San Francisco) for collaboration; R. Schwartz (National Institutes of Health) for support with advice and reagents; and H. Su (National Institutes of Health) for sharing findings about human DOCK8 deficiency before publication. Supported by the Wellcome Trust (R.J.C. and C.C.G.), the Australian Research Council (C.C.G.), the National Health and Medical Research Council (C.C.G., R.B., S.G.T., C.G.V., F.M., K.L.R., L.E.T. and E.K.D.), the Medical Research Council (T.L. and R.J.C.), The Ramaciotti Foundation (A.E. and C.C.G.), Deutsche Forschungsgemeinschaft (A.E.), Cancer Research UK (F.D.B.), the Andrew McMichael Trust Fund (R.J.C.) and the National Institute for Health Research Biomedical Research Centre Programme (R.J.C.).

Author information

Authors and Affiliations

Authors

Contributions

T.L., K.L.R., A.L.J., T.B.-J. and B.W. mapped and identified the mutations; K.L.R. analyzed pri and complementation crosses with E.K., H.D., L.E.T. and A.E.; T.L. analyzed cpm with T.L.C., A.L.J., T.B.-J., D.A. and J.G.C.; B.T. and F.D.B. did synapse analysis; M.J.L. supervised early experiments on cpm by A.L.J.; F.M. and K.L.R. analyzed the effects of the BAFF transgene; E.K.D. and S.G.T. analyzed SAP-dependent B cell–T cell conjugation; K.L.R., T.D.C., T.C. and R.B. analyzed GC response in the SWHEL adoptive-transfer system; C.G.V. and E.K. designed and established the genetic screen and identified cpm and pri founders; C.C.G. and R.J.C. initiated and contributed to all aspects of study design and interpretation; and K.L.R., T.L., R.J.C. and C.C.G. wrote the paper in consultation with all coauthors.

Corresponding authors

Correspondence to Richard J Cornall or Christopher C Goodnow.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1–2 (PDF 1179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, K., Lambe, T., Johnson, A. et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol 10, 1283–1291 (2009). https://doi.org/10.1038/ni.1820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing