Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Raising the NKT cell family

Subjects

Abstract

Natural killer T cells (NKT cells) are CD1d-restricted, lipid antigen–reactive, immunoregulatory T lymphocytes that can promote cell-mediated immunity to tumors and infectious organisms, including bacteria and viruses, yet paradoxically they can also suppress the cell-mediated immunity associated with autoimmune disease and allograft rejection. Furthermore, in some diseases, such as atherosclerosis and allergy, NKT cell activity can be deleterious to the host. Although the precise means by which these cells carry out such contrasting functions is unclear, recent studies have highlighted the existence of many functionally distinct NKT cell subsets. Because their frequency and number vary widely between individuals, it is important to understand the mechanisms that regulate the development and maintenance of NKT cells and subsets thereof, which is the subject of this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular signaling pathways involved in NKT cell selection.
Figure 2: NKT cell development and maturation.

Similar content being viewed by others

References

  1. Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    CAS  PubMed  Google Scholar 

  2. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007). An excellent general review of NKT cell biology.

    Article  CAS  PubMed  Google Scholar 

  3. Borg, N.A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44–49 (2007). First paper to provide a structural demonstration of how the NKT TCR binds to α-GalCer presented by CD1d. It highlights the key role of the invariant TCR α-chain in antigen recognition; this is extended and complemented in refs. 4 and 5.

    Article  CAS  PubMed  Google Scholar 

  4. Pellicci, D.G. et al. Differential recognition of CD1d-α-galactosyl ceramide by the Vβ8.2 and Vβ7 semi-invariant NKT T cell receptors. Immunity 31, 47–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mallevaey, T. et al. T cell receptor CDR2β and CDR3β loops collaborate functionally to shape the iNKT cell repertoire. Immunity 31, 60–71 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawano, T. et al. Cd1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    CAS  PubMed  Google Scholar 

  7. Godfrey, D.I. et al. Antigen recognition by CD1d-restricted NKT T cell receptors. Semin. Immunol. published online, doi:10.1016/j.smim.2009.10.004 (28 November 2009).

  8. Godfrey, D.I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Berzins, S.P., Cochrane, A.D., Pellicci, D.G., Smyth, M.J. & Godfrey, D.I. Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur. J. Immunol. 35, 1399–1407 (2005).

    CAS  PubMed  Google Scholar 

  10. Lee, P.T. et al. Testing the NKT cell hypothesis of human IDDM pathogenesis. J. Clin. Invest. 110, 793–800 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Montoya, C.J. et al. Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 122, 1–14 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Berzofsky, J.A. & Terabe, M. NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J. Immunol. 180, 3627–3635 (2008).

    CAS  PubMed  Google Scholar 

  13. Jahng, A. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947–957 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang, D.H. et al. Inflammation associated lysophospholipids as ligands for CD1d restricted T cells in human cancer. Blood 112, 1308–1316 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Rhijn, I. et al. CD1d-restricted T cell activation by nonlipidic small molecules. Proc. Natl. Acad. Sci. USA 101, 13578–13583 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Park, S.H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893–904 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Duarte, N. et al. Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted nonclassical NKT cells. J. Immunol. 173, 3112–3118 (2004).

    CAS  PubMed  Google Scholar 

  18. Terabe, M. et al. A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med. 202, 1627–1633 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ambrosino, E. et al. Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J. Immunol. 179, 5126–5136 (2007).

    CAS  PubMed  Google Scholar 

  20. Halder, R.C., Aguilera, C., Maricic, I. & Kumar, V. Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J. Clin. Invest. 117, 2302–2312 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Treiner, E. & Lantz, O. CD1d- and MR1-restricted invariant T cells: of mice and men. Curr. Opin. Immunol. 18, 519–526 (2006).

    CAS  PubMed  Google Scholar 

  22. Barral, D.C. & Brenner, M.B. CD1 antigen presentation: how it works. Nat. Rev. Immunol. 7, 929–941 (2007).

    CAS  PubMed  Google Scholar 

  23. Cohen, N.R., Garg, S. & Brenner, M.B. Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv. Immunol. 102, 1–94 (2009).

    CAS  PubMed  Google Scholar 

  24. Cui, J.Q. et al. Requirement for Vα14 NKT cells in Il-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    CAS  PubMed  Google Scholar 

  25. Marrella, V. et al. A hypomorphic R229Q Rag2 mouse mutant recapitulates human Omenn syndrome. J. Clin. Invest. 117, 1260–1269 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    CAS  PubMed  Google Scholar 

  27. Chan, G.D., Hanke, T. & Fischer, K.D. Vav-1 regulates NK T cell development and NK cell cytotoxicity. Eur. J. Immunol. 31, 2403–2410 (2001).

    CAS  PubMed  Google Scholar 

  28. Iwabuchi, K. et al. Defective development of NK1.1+ T-cell antigen receptor αβ+ cells in ζ-associated protein 70 null mice with an accumulation of NK1.1+ CD3- NK-like cells in the thymus. Blood 97, 1765–1775 (2001).

    CAS  PubMed  Google Scholar 

  29. Gadue, P., Morton, N. & Stein, P.L. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J. Exp. Med. 190, 1189–1196 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Arase, H. et al. Developmental arrest of NK1.1+ T cell antigen receptor (TCR)-α/β+ T cells and expansion of NK1.1+ TCR-γ/δ+ T cell development in CD3ζ-deficient mice. J. Exp. Med. 182, 891–895 (1995).

    CAS  PubMed  Google Scholar 

  31. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    CAS  PubMed  Google Scholar 

  32. Shimamura, M., Ohteki, T., Beutner, U. & MacDonald, H.R. Lack of directed Vα14-Jα281 rearrangements in NK1+ T cells. Eur. J. Immunol. 27, 1576–1579 (1997).

    CAS  PubMed  Google Scholar 

  33. Guo, J. et al. Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nat. Immunol. 3, 469–476 (2002).

    PubMed  Google Scholar 

  34. Bezbradica, J.S., Hill, T., Stanic, A.K., Van Kaer, L. & Joyce, S. Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny. Proc. Natl. Acad. Sci. USA 102, 5114–5119 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Egawa, T. et al. Genetic evidence supporting selection of the vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705–716 (2005).

    CAS  PubMed  Google Scholar 

  36. Hager, E., Hawwari, A., Matsuda, J.L., Krangel, M.S. & Gapin, L. Multiple constraints at the level of TCRα rearrangement impact Vα14i NKT cell development. J. Immunol. 179, 2228–2234 (2007).

    CAS  PubMed  Google Scholar 

  37. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    CAS  PubMed  Google Scholar 

  38. Coles, M.C. & Raulet, D.H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).

    CAS  PubMed  Google Scholar 

  39. Wei, D.G. et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J. Exp. Med. 202, 239–248 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    CAS  PubMed  Google Scholar 

  41. Porubsky, S. et al. Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc. Natl. Acad. Sci. USA 104, 5977–5982 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Christiansen, D. et al. Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol. 6, e172 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Godfrey, D.I. & Berzins, S.P. Control points in NKT-cell development. Nat. Rev. Immunol. 7, 505–518 (2007).

    CAS  PubMed  Google Scholar 

  44. Chung, B., Aoukaty, A., Dutz, J., Terhorst, C. & Tan, R. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J. Immunol. 174, 3153–3157 (2005).

    CAS  PubMed  Google Scholar 

  45. Nichols, K.E. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 11, 340–345 (2005).

    CAS  PubMed  Google Scholar 

  46. Pasquier, B. et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695–701 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Borowski, C. & Bendelac, A. Signaling for NKT cell development: the SAP-FynT connection. J. Exp. Med. 201, 833–836 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma, C.S., Nichols, K.E. & Tangye, S.G. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu. Rev. Immunol. 25, 337–379 (2007).

    CAS  PubMed  Google Scholar 

  49. Griewank, K. et al. Homotypic interactions mediated by slamf1 and slamf6 receptors control NKT cell lineage development. Immunity 27, 751–762 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jordan, M.A., Fletcher, J.M., Pellicci, D. & Baxter, A.G. Slamf1, the NKT cell control gene Nkt1. J. Immunol. 178, 1618–1627 (2007). References 49 and 50 provide direct evidence for a role for SLAM family members in directing NKT cell development. Reference 50 also reveals that a defect in SLAM-F1 is partly responsible for the NKT cell deficiency in the nonobese diabetic mouse background.

    CAS  PubMed  Google Scholar 

  51. Li, W. et al. The SLAM-associated protein signaling pathway is required for development of CD4+ T cells selected by homotypic thymocyte interaction. Immunity 27, 763–774 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, W. et al. Thymic selection pathway regulates the effector function of CD4 T cells. J. Exp. Med. 204, 2145–2157 (2007). References 51 and 52 demonstrate that forced selection of conventional MHC class II–restricted T cells by cortical thymocytes rather than thymic epithelial cells promotes an NKT cell–like phenotype. This provides strong support for the notion that the selecting cell type in the thymus determines the NKT cell differentiation program.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Eberl, G., Lowin-Kropf, B. & MacDonald, H.R. Cutting edge: NKT cell development is selectively impaired in Fyn-deficient mice. J. Immunol. 163, 4091–4094 (1999).

    CAS  PubMed  Google Scholar 

  54. Savage, A.K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008). References 54 and 55 demonstrate that PLZF seems to be a key transcription factor in the development of nonconventional T cells, including NKT cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kreslavsky, T. et al. TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity. Proc. Natl. Acad. Sci. USA 106, 12453–12458 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Felices, M., Yin, C.C., Kosaka, Y., Kang, J. & Berg, L.J. Tec kinase Itk in γδT cells is pivotal for controlling IgE production in vivo. Proc. Natl. Acad. Sci. USA 106, 8308–8313 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chun, T. et al. CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J. Exp. Med. 197, 907–918 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Pellicci, D.G. et al. Intrathymic NKT cell development is blocked by the presence of α-galactosylceramide. Eur. J. Immunol. 33, 1816–1823 (2003).

    CAS  PubMed  Google Scholar 

  60. Stanic, A.K. et al. NF-κB controls cell fate specification, survival, and molecular differentiation of immunoregulatory natural T lymphocytes. J. Immunol. 172, 2265–2273 (2004).

    CAS  PubMed  Google Scholar 

  61. Benlagha, K., Wei, D.G., Veiga, J., Teyton, L. & Bendelac, A. Characterization of the early stages of thymic NKT cell development. J. Exp. Med. 202, 485–492 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    CAS  PubMed  Google Scholar 

  63. Gadue, P. & Stein, P.L.N.K. T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J. Immunol. 169, 2397–2406 (2002).

    CAS  PubMed  Google Scholar 

  64. Pellicci, D.G. et al. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1 CD4+ CD1d-dependent precursor stage. J. Exp. Med. 195, 835–844 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Coquet, J.M. et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4NK1.1 NKT cell population. Proc. Natl. Acad. Sci. USA 105, 11287–11292 (2008). Demonstrates the extreme functional diversity in terms of cytokine production that is encompassed by the NKT cell population, including a subset of IL-17-producing NKT cells that lack expression of both CD4 and NK1.1. Also demonstrates that CD4 NKT cells branch from CD4+ NKT cell precursors at stage 1 in thymic NKT cell development.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. McNab, F.W. et al. The influence of CD1d in postselection NKT cell maturation and homeostasis. J. Immunol. 175, 3762–3768 (2005).

    CAS  PubMed  Google Scholar 

  67. Gumperz, J.E., Miyake, S., Yamamura, T. & Brenner, M.B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195, 625–636 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, P.T., Benlagha, K., Teyton, L. & Bendelac, A. Distinct functional lineages of human Vα24 natural killer T cells. J. Exp. Med. 195, 637–641 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Baev, D.V. et al. Distinct homeostatic requirements of CD4+ and CD4 subsets of Vα24-invariant natural killer T cells in humans. Blood 104, 4150–4156 (2004).

    CAS  PubMed  Google Scholar 

  70. Franki, A.S. et al. A unique lymphotoxin αβ-dependent pathway regulates thymic emigration of Vα14 invariant natural killer T cells. Proc. Natl. Acad. Sci. USA 103, 9160–9165 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Vallabhapurapu, S. et al. Rel/NF-κB family member RelA regulates NK1.1 to NK1.1+ transition as well as IL-15-induced expansion of NKT cells. Eur. J. Immunol. 38, 3508–3519 (2008).

    CAS  PubMed  Google Scholar 

  72. Allende, M.L. et al. S1P1 receptor expression regulates emergence of NKT cells in peripheral tissues. FASEB J. 22, 307–315 (2007).

    PubMed  Google Scholar 

  73. Sandberg, J.K., Stoddart, C.A., Brilot, F., Jordan, K.A. & Nixon, D.F. Development of innate CD4+ α-chain variable gene segment 24 (Vα24) natural killer T cells in the early human fetal thymus is regulated by IL-7. Proc. Natl. Acad. Sci. USA 101, 7058–7063 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Matsuda, J.L. & Gapin, L. Developmental program of mouse Vα14i NKT cells. Curr. Opin. Immunol. 17, 122–130 (2005).

    CAS  PubMed  Google Scholar 

  75. Lazarevic, V. et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat. Immunol. 10, 306–313 (2009). Demonstrates that the NFAT-calcineurin pathway is critical for NKT cell development via a specific transcription factor, Egr2.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Schmidt-Supprian, M. et al. Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-κB activation. Proc. Natl. Acad. Sci. USA 101, 4566–4571 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sivakumar, V., Hammond, K.J., Howells, N., Pfeffer, K. & Weih, F. Differential requirement for Rel/nuclear factor κB family members in natural killer T cell development. J. Exp. Med. 197, 1613–1621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mycko, M.P. et al. Selective requirement for c-Myc at an early stage of Vα14i NKT cell development. J. Immunol. 182, 4641–4648 (2009).First account to show that the transcription factor c-Myc has a critical role in NKT cell progression beyond stage 1.

    CAS  PubMed  Google Scholar 

  79. Lawson, V.J., Maurice, D., Silk, J.D., Cerundolo, V. & Weston, K. Aberrant selection and function of invariant NKT cells in the absence of AP-1 transcription factor Fra-2. J. Immunol. 183, 2575–2584 (2009).

    CAS  PubMed  Google Scholar 

  80. Zullo, A.J., Benlagha, K., Bendelac, A. & Taparowsky, E.J. Sensitivity of NK1.1-negative NKT cells to transgenic BATF defines a role for activator protein-1 in the expansion and maturation of immature NKT cells in the thymus. J. Immunol. 178, 58–66 (2007).

    CAS  PubMed  Google Scholar 

  81. Monticelli, L.A. et al. Transcriptional regulator Id2 controls survival of hepatic NKT cells. Proc. Natl. Acad. Sci. USA 106, 19461–19466 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, S. & Cantorna, M.T. The vitamin D receptor is required for iNKT cell development. Proc. Natl. Acad. Sci. USA 105, 5207–5212 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Doisne, J.M. et al. iNKT cell development is orchestrated by different branches of TGF-β signaling. J. Exp. Med. 206, 1365–1378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng, X. et al. Modulation of NKT cell development by B7–CD28 interaction: an expanding horizon for costimulation. PLoS ONE 3, e2703 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. Chung, Y. et al. A critical role of costimulation during intrathymic development of invariant NK T cells. J. Immunol. 180, 2276–2283 (2008).

    CAS  PubMed  Google Scholar 

  86. Akbari, O. et al. ICOS/ICOSL interaction is required for CD4+ invariant NKT cell function and homeostatic survival. J. Immunol. 180, 5448–5456 (2008).

    CAS  PubMed  Google Scholar 

  87. Watanabe, S. et al. Suppression of Con A-induced hepatitis induction in ICOS-deficient mice. Immunol. Lett. published online, doi:10.1016/j.imlet.2009.11.002 (13 November 2009).

  88. Astrakhan, A., Ochs, H.D. & Rawlings, D.J. Wiskott-Aldrich syndrome protein is required for homeostasis and function of invariant NKT cells. J. Immunol. 182, 7370–7380 (2009).

    CAS  PubMed  Google Scholar 

  89. Locci, M. et al. The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function. J. Exp. Med. 206, 735–742 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fedeli, M. et al. Dicer-dependent microRNA pathway controls invariant NKT cell development. J. Immunol. 183, 2506–2512 (2009).

    CAS  PubMed  Google Scholar 

  91. Zhou, L. et al. Tie2cre-induced inactivation of the miRNA-processing enzyme Dicer disrupts invariant NKT cell development. Proc. Natl. Acad. Sci. USA 106, 10266–10271 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Diao, H. et al. Osteopontin regulates development and function of invariant natural killer T cells. Proc. Natl. Acad. Sci. USA 105, 15884–15889 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Poulton, L.D. et al. Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int. Immunol. 13, 887–896 (2001).

    CAS  PubMed  Google Scholar 

  94. Hammond, K.J.L. et al. CD1d-restricted NKT cells: an interstrain comparison. J. Immunol. 167, 1164–1173 (2001).

    CAS  PubMed  Google Scholar 

  95. Rymarchyk, S.L. et al. Widespread natural variation in murine natural killer T-cell number and function. Immunology 125, 331–343 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chan, A.C. et al. Immune characterization of an individual with an exceptionally high natural killer T cell frequency and her immediate family. Clin. Exp. Immunol. 156, 238–245 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Berzins, S.P. et al. Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: implications for human studies. Immunol. Cell Biol. 82, 247–252 (2004).

    PubMed  Google Scholar 

  98. Matsuda, J.L. et al. Homeostasis of Vα14i NKT cells. Nat. Immunol. 3, 966–974 (2002).

    CAS  PubMed  Google Scholar 

  99. Ranson, T. et al. IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc. Natl. Acad. Sci. USA 100, 2663–2668 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    PubMed  PubMed Central  Google Scholar 

  101. Germanov, E. et al. Critical role for the chemokine receptor CXCR6 in homeostasis and activation of CD1d-restricted NKT cells. J. Immunol. 181, 81–91 (2008).

    CAS  PubMed  Google Scholar 

  102. Ohteki, T., Maki, C., Koyasu, S., Mak, T.W. & Ohashi, P.S. Cutting edge: LFA-1 is required for liver NK1.1+TCRαβ+ cell development: Evidence that liver NK1.1+TCRαβ+ cells originate from multiple pathways. J. Immunol. 162, 3753–3756 (1999).

    CAS  PubMed  Google Scholar 

  103. Emoto, M., Mittrucker, H.W., Schmits, R., Mak, T.W. & Kaufmann, S.H.E. Critical role of leukocyte function-associated antigen-1 in liver accumulation of CD4+ NKT cells. J. Immunol. 162, 5094–5098 (1999).

    CAS  PubMed  Google Scholar 

  104. Doisne, J.M. et al. Skin and peripheral lymph node invariant NKT cells are mainly retinoic acid receptor-related orphan receptor γt+ and respond preferentially under inflammatory conditions. J. Immunol. 183, 2142–2149 (2009).

    CAS  PubMed  Google Scholar 

  105. Takahashi, T. et al. Cutting edge: analysis of human Vα24+CD8+ NK T cells activated by α-galactosylceramide-pulsed monocyte-derived dendritic cells. J. Immunol. 168, 3140–3144 (2002).

    CAS  PubMed  Google Scholar 

  106. Crowe, N.Y. et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 202, 1279–1288 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Berzins, S.P., McNab, F.W., Jones, C.M., Smyth, M.J. & Godfrey, D.I. Long-term retention of mature NK1.1+ NKT cells in the thymus. J. Immunol. 176, 4059–4065 (2006).

    CAS  PubMed  Google Scholar 

  108. Iwai, T. et al. Regulatory roles of NKT cells in the induction and maintenance of cyclophosphamide-induced tolerance. J. Immunol. 177, 8400–8409 (2006).

    CAS  PubMed  Google Scholar 

  109. Terashima, A. et al. A novel subset of mouse NKT cells bearing the IL-17 receptor B responds to IL-25 and contributes to airway hyperreactivity. J. Exp. Med. 205, 2727–2733 (2008).Describes a unique subset of NKT cells defined by expression of IL-25R that are key mediators of IL-25-driven airway hyper-reactivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Michel, M.L. et al. Identification of an IL-17-producing NK1.1 iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007). Demonstrates the existence of a unique subset of IL-17-producing NK1.1-NKT cells that promote airway neutrophilia. Further investigation of the development and phenotype of these cells is provided in references 65, 104, 111 and 112.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Michel, M.L. et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl. Acad. Sci. USA 105, 19845–19850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rachitskaya, A.V. et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol. 180, 5167–5171 (2008).

    CAS  PubMed  Google Scholar 

  113. Weaver, C.T., Hatton, R.D., Mangan, P.R. & Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    CAS  PubMed  Google Scholar 

  114. Pichavant, M. et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J. Exp. Med. 205, 385–393 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yoshiga, Y. et al. Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int. J. Mol. Med. 22, 369–374 (2008).

    CAS  PubMed  Google Scholar 

  116. Coquet, J.M. et al. IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J. Immunol. 178, 2827–2834 (2007).

    CAS  PubMed  Google Scholar 

  117. Goto, M. et al. Murine NKT cells produce Th17 cytokine interleukin-22. Cell. Immunol. 254, 81–84 (2009).

    CAS  PubMed  Google Scholar 

  118. Maeda, M. et al. IL-21 enhances dendritic cell ability to induce interferon-gamma production by natural killer T cells. Immunobiology 212, 537–547 (2007).

    CAS  PubMed  Google Scholar 

  119. Harada, M. et al. IL-21-induced Bε cell apoptosis mediated by natural killer T cells suppresses IgE responses. J. Exp. Med. 203, 2929–2937 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. McNab, F.W. et al. Peripheral NK1.1 NKT cells are mature and functionally distinct from their thymic counterparts. J. Immunol. 179, 6630–6637 (2007).

    CAS  PubMed  Google Scholar 

  121. Jordan, M.A., Fletcher, J. & Baxter, A.G. Genetic control of NKT cell numbers. Immunol. Cell Biol. 82, 276–284 (2004).

    CAS  PubMed  Google Scholar 

  122. Walunas, T.L., Wang, B., Wang, C.R. & Leiden, J.M. Cutting edge: The Ets1 transcription factor is required for the development of NK T cells in mice. J. Immunol. 164, 2857–2860 (2000).

    CAS  PubMed  Google Scholar 

  123. Kim, P.J. et al. GATA-3 Regulates the development and function of invariant NKT cells. J. Immunol. 177, 6650–6659 (2006).

    CAS  PubMed  Google Scholar 

  124. Lacorazza, H.D. et al. The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17, 437–449 (2002).

    CAS  PubMed  Google Scholar 

  125. Elewaut, D. et al. NIK-dependent RelB activation defines a unique signaling pathway for the development of Vα14i NKT cells. J. Exp. Med. 197, 1623–1633 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    CAS  PubMed  Google Scholar 

  127. Kunisaki, Y. et al. DOCK2 is required in T cell precursors for development of Vα14 NK T cells. J. Immunol. 176, 4640–4645 (2006).

    CAS  PubMed  Google Scholar 

  128. Ohteki, T. et al. The transcription factor interferon regulatory factor 1 (IRF-1) is important during the maturation of natural killer 1.1+ T cell receptor-α/β+ (NK1+ T) cells, natural killer cells, and intestinal intraepithelial T cells. J. Exp. Med. 187, 967–972 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Stanic, A.K. et al. Cutting edge: the ontogeny and function of Vα14Jα18 natural T lymphocytes require signal processing by protein kinase C θ and NF-κB. J. Immunol. 172, 4667–4671 (2004).

    CAS  PubMed  Google Scholar 

  130. Bezbradica, J.S. et al. Granulocyte-macrophage colony-stimulating factor regulates effector differentiation of invariant natural killer T cells during thymic ontogeny. Immunity 25, 487–497 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Health and Medical Research Council for research support and members of our laboratories for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale I Godfrey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godfrey, D., Stankovic, S. & Baxter, A. Raising the NKT cell family. Nat Immunol 11, 197–206 (2010). https://doi.org/10.1038/ni.1841

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing