Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRPV2 has a pivotal role in macrophage particle binding and phagocytosis

Abstract

Macrophage phagocytosis is critical for defense against pathogens. Whereas many steps of phagocytosis involve ionic flux, the underlying ion channels remain ill defined. Here we show that zymosan-, immunoglobulin G (IgG)- and complement-mediated particle binding and phagocytosis were impaired in macrophages lacking the cation channel TRPV2. TRPV2 was recruited to the nascent phagosome and depolarized the plasma membrane. Depolarization increased the synthesis of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), which triggered the partial actin depolymerization necessary for occupancy-elicited phagocytic receptor clustering. TRPV2-deficient macrophages were also defective in chemoattractant-elicited motility. Consequently, TRPV2-deficient mice showed accelerated mortality and greater organ bacterial load when challenged with Listeria monocytogenes. Our data demonstrate the participation of TRPV2 in early phagocytosis and its fundamental importance in innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TRPV2 expression in phagocyte populations.
Figure 2: TRPV2 Ca2+ influx responses and function in macrophage chemotaxis and cytokine release.
Figure 3: Defective phagocytosis and particle binding across diverse substrates in TRPV2-deficient macrophages.
Figure 4: Translocation of TRPV2 to developing phagosomes and FcγR clustering.
Figure 5: TRPV2-dependent depolarization regulates particle binding and FcγR clustering.
Figure 6: Depolarization and actin depolymerization regulate FcγR clustering.
Figure 7: Impaired bacterial phagocytosis by TRPV2 deficient macrophages in vitro and enhanced in vivo susceptibility of TRPV2-deficient mice to bacterial infection.

Similar content being viewed by others

References

  1. Aderem, A. & Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).

    Article  CAS  Google Scholar 

  2. Flannagan, R.S., Cosio, G. & Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7, 355–366 (2009).

    Article  CAS  Google Scholar 

  3. Hackam, D.J., Rotstein, O.D., Schreiber, A., Zhang, W. & Grinstein, S. Rho is required for the initiation of calcium signaling and phagocytosis by Fcγ receptors in macrophages. J. Exp. Med. 186, 955–966 (1997).

    Article  CAS  Google Scholar 

  4. Jongstra-Bilen, J., Harrison, R. & Grinstein, S. Fcγ-receptors induce Mac-1 (CD11b/CD18) mobilization and accumulation in the phagocytic cup for optimal phagocytosis. J. Biol. Chem. 278, 45720–45729 (2003).

    Article  CAS  Google Scholar 

  5. Carrithers, M.D. et al. Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification. J. Immunol. 178, 7822–7832 (2007).

    Article  CAS  Google Scholar 

  6. Holevinsky, K.O. & Nelson, D.J. Simultaneous detection of free radical release and membrane current during phagocytosis. J. Biol. Chem. 270, 8328–8336 (1995).

    Article  CAS  Google Scholar 

  7. Mellman, I., Fuchs, R. & Helenius, A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55, 663–700 (1986).

    Article  CAS  Google Scholar 

  8. Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J. & Julius, D. A capsaicin receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

    Article  CAS  Google Scholar 

  9. Kanzaki, M. et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat. Cell Biol. 1, 165–170 (1999).

    Article  CAS  Google Scholar 

  10. Kowase, T., Nakazato, Y., Yoko, O.H., Morikawa, A. & Kojima, I. Immunohistochemical localization of growth factor-regulated channel (GRC) in human tissues. Endocr. J. 49, 349–355 (2002).

    Article  CAS  Google Scholar 

  11. Neeper, M.P. et al. Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J. Biol. Chem. 282, 15894–15902 (2007).

    Article  CAS  Google Scholar 

  12. Penna, A. et al. PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane. Cell Calcium 39, 495–507 (2006).

    Article  CAS  Google Scholar 

  13. Monet, M. et al. Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim. Biophys. Acta 1793, 528–539 (2009).

    Article  CAS  Google Scholar 

  14. Nagasawa, M., Nakagawa, Y., Tanaka, S. & Kojima, I. Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J. Cell. Physiol. 210, 692–702 (2007).

    Article  CAS  Google Scholar 

  15. Ramsey, I.S., Delling, M. & Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  Google Scholar 

  16. Juvin, V., Penna, A., Chemin, J., Lin, Y.L. & Rassendren, F.A. Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol. Pharmacol. 72, 1258–1268 (2007).

    Article  CAS  Google Scholar 

  17. Herre, J. et al. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104, 4038–4045 (2004).

    Article  CAS  Google Scholar 

  18. Khandani, A. et al. Microtubules regulate PI-3K activity and recruitment to the phagocytic cup during Fcγ receptor-mediated phagocytosis in nonelicited macrophages. J. Leukoc. Biol. 82, 417–428 (2007).

    Article  CAS  Google Scholar 

  19. Li, B. et al. Yeast β-glucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. J. Immunol. 177, 1661–1669 (2006).

    Article  CAS  Google Scholar 

  20. Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006).

    Article  CAS  Google Scholar 

  21. Garcia-Garcia, E. & Rosales, C. Signal transduction during Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 72, 1092–1108 (2002).

    CAS  PubMed  Google Scholar 

  22. Ueda, T., Rieu, P., Brayer, J. & Arnaout, M.A. Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc. Natl. Acad. Sci. USA 91, 10680–10684 (1994).

    Article  CAS  Google Scholar 

  23. Di Virgilio, F., Meyer, B.C., Greenberg, S. & Silverstein, S.C. Fc receptor-mediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca2+ levels. J. Cell Biol. 106, 657–666 (1988).

    Article  CAS  Google Scholar 

  24. Campo, B., Surprenant, A. & North, R.A. Sustained depolarization and ADP-ribose activate a common ionic current in rat peritoneal macrophages. J. Immunol. 170, 1167–1173 (2003).

    Article  CAS  Google Scholar 

  25. Vernon-Wilson, E.F. et al. CD31 delays phagocyte membrane repolarization to promote efficient binding of apoptotic cells. J. Leukoc. Biol. 82, 1278–1288 (2007).

    Article  CAS  Google Scholar 

  26. Young, J.D., Unkeless, J.C., Kaback, H.R. & Cohn, Z.A. Mouse macrophage Fc receptor for IgG γ2b/γ1 in artificial and plasma membrane vesicles functions as a ligand-dependent ionophore. Proc. Natl. Acad. Sci. USA 80, 1636–1640 (1983).

    Article  CAS  Google Scholar 

  27. Mao, Y.S. et al. Essential and unique roles of PIP5K-γ and -α in Fcγ receptor-mediated phagocytosis. J. Cell Biol. 184, 281–296 (2009).

    Article  CAS  Google Scholar 

  28. Defacque, H. et al. Phosphoinositides regulate membrane-dependent actin assembly by latex bead phagosomes. Mol. Biol. Cell 13, 1190–1202 (2002).

    Article  CAS  Google Scholar 

  29. Schilling, T. & Eder, C. Importance of the non-selective cation channel TRPV1 for microglial reactive oxygen species generation. J. Neuroimmunol. 216, 118–121 (2009).

    Article  CAS  Google Scholar 

  30. Etkovitz, N., Rubinstein, S., Daniel, L. & Breitbart, H. Role of PI3-kinase and PI4-kinase in actin polymerization during bovine sperm capacitation. Biol. Reprod. 77, 263–273 (2007).

    Article  CAS  Google Scholar 

  31. Ishiki, M. & Klip, A. Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology 146, 5071–5078 (2005).

    Article  CAS  Google Scholar 

  32. Indik, Z.K., Park, J.G., Hunter, S. & Schreiber, A.D. The molecular dissection of Fcγ receptor mediated phagocytosis. Blood 86, 4389–4399 (1995).

    CAS  PubMed  Google Scholar 

  33. Wainszelbaum, M.J., Proctor, B.M., Pontow, S.E., Stahl, P.D. & Barbieri, M.A. IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent. Exp. Cell Res. 312, 2238–2251 (2006).

    Article  CAS  Google Scholar 

  34. Saito, M., Hanson, P.I. & Schlesinger, P. Luminal chloride-dependent activation of endosome calcium channels: patch clamp study of enlarged endosomes. J. Biol. Chem. 282, 27327–27333 (2007).

    Article  CAS  Google Scholar 

  35. Cossart, P. & Toledo-Arana, A. Listeria monocytogenes, a unique model in infection biology: an overview. Microbes Infect. 10, 1041–1050 (2008).

    Article  CAS  Google Scholar 

  36. Guer, A.D. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414 (2002).

    Article  Google Scholar 

  37. Sobota, A. et al. Binding of IgG-opsonized particles to FcγR is an active stage of phagocytosis that involves receptor clustering and phosphorylation. J. Immunol. 175, 4450–4457 (2005).

    Article  CAS  Google Scholar 

  38. Medh, J.D. & Weigel, P.H. Separation of phosphatidylinositols and other phospholipids by two-step one-dimensional thin-layer chromatography. J. Lipid Res. 30, 761–764 (1989).

    CAS  PubMed  Google Scholar 

  39. Ames, B.N. & Dubin, D.T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J. Biol. Chem. 235, 769–775 (1960).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Brederson, M.-K. Chung, S. Huang, M. Meffert, C. Munns and V. Vega for suggestions; J. Wang and S. Li for technical assistance; S. Hudson for help with flow cytometry; P. Devreotes (Johns Hopkins School of Medicine) for suggestions and latrunculin A; and W. Bishai and S. Huang for critically reading the manuscript. Supported by the National Institutes of Health (R01NS051551 to MJC, RO1AI42287-05 to M.J.S.; AI059298 and AI071117 to B.M.V.; GM059251 to D.M.R.; and a Medical Scientist Training Program Award to T.M.L.).

Author information

Authors and Affiliations

Authors

Contributions

T.M.L. did most of the experiments; U.P. generated TRPV2-deficient mice, did some immunolocalization experiments and contributed to study design; B.M.V. contributed to study design for in vitro macrophage characterization and pathway delineation; M.J.S. contributed to study design for L. monocytogenes experiments and interpretation of flow cytometry data; D.M.R. contributed to study design for phospholipid metabolism; M.J.C. did some immunolocalization; T.M.L. and M.J.C. designed the study, analyzed data and wrote the manuscript; and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michael J Caterina.

Ethics declarations

Competing interests

Under a licensing agreement between Merck and University of California at San Francisco, M.J.C. is entitled to a share of royalties received for sales of products used in the study described in this article. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2582 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Link, T., Park, U., Vonakis, B. et al. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol 11, 232–239 (2010). https://doi.org/10.1038/ni.1842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing