Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epithelial decision makers: in search of the 'epimmunome'

Abstract

Frequent microbial and nonmicrobial challenges to epithelial cells trigger discrete pathways, promoting molecular changes such as the secretion of specific cytokines and chemokines and alterations to molecules displayed at the epithelial cell surface. In combination, these molecules impose key decisions on innate and adaptive immune cells. Depending on context, those decisions can be as diverse as those imposed by professional antigen-presenting cells, benefiting the host by balancing immune competence with the avoidance of immunopathology. Nonetheless, this potency of epithelial cells is also consistent with the causal contribution of epithelial dysregulation to myriad inflammatory diseases. This pathogenic axis provides an attractive target for tissue-specific clinical manipulation. In this context, a research goal should be to identify all molecules used by epithelial cells to instruct immune cells. We term this the 'epimmunome'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epithelial cells impose diverse decisions on immune cells.
Figure 2: Molecular axes of epithelial immune cell interactions.

Similar content being viewed by others

References

  1. Anderson, G. & Jenkinson, E.J. Lymphostromal interactions in thymic development and function. Nat. Rev. Immunol. 1, 31–40 (2001).

    CAS  PubMed  Google Scholar 

  2. Hayday, A., Theodoridis, E., Ramsburg, E. & Shires, J. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat. Immunol. 2, 997–1003 (2001).

    CAS  PubMed  Google Scholar 

  3. Kronenberg, M. & Havran, W.L. Frontline T cells: γδ T cells and intraepithelial lymphocytes. Immunol. Rev. 215, 5–7 (2007).

    CAS  PubMed  Google Scholar 

  4. Laky, K. et al. Enterocyte expression of interleukin 7 induces development of γδ T cells and Peyer's patches. J. Exp. Med. 191, 1569–1580 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lai, Y.-G. IL-15 promotes survival but not effector function differentiation of CD8+ TCRαβ+ intestinal intraepithelial lymphocytes. J. Immunol. 163, 5843–5850 (1999).

    CAS  PubMed  Google Scholar 

  6. Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    CAS  PubMed  Google Scholar 

  8. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Thorey, I.S. et al. The Ca2+-binding proteins S100A8 and S100A9 are encoded by novel injury-regulated genes. J. Biol. Chem. 276, 35818–35825 (2001).

    CAS  PubMed  Google Scholar 

  10. Ryckman, C., Vandal, K., Rouleau, P., Talbot, M. & Tessier, P.A. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 170, 3233–3242 (2003).

    CAS  PubMed  Google Scholar 

  11. Ghavami, S. et al. S100A8/A9: a Janus-faced molecule in cancer therapy and tumorgenesis. Eur. J. Pharmacol. 625, 73–83 (2009).

    CAS  PubMed  Google Scholar 

  12. Bando, M. et al. Interleukin-1α regulates antimicrobial peptide expression in human keratinocytes. Immunol. Cell Biol. 85, 532–537 (2007).

    CAS  PubMed  Google Scholar 

  13. Carroll, J.M., Romero, M.R. & Watt, F.M. Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83, 957–968 (1995).

    CAS  PubMed  Google Scholar 

  14. Scaffidi, P., Misteli, T. & Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    CAS  PubMed  Google Scholar 

  15. Sims, G.P., Rowe, D.C., Rietdijk, S.T., Herbst, R. & Coyle, A.J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367–388 (2010).

    CAS  PubMed  Google Scholar 

  16. Kainulainen, V., Wang, H., Schick, C. & Bernfield, M. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J. Biol. Chem. 273, 11563–11569 (1998).

    CAS  PubMed  Google Scholar 

  17. Bruynzeel, I., Koopman, G., van der Raaij, L.M., Pals, S.T. & Willemze, R. CD44 antibody stimulates adhesion of peripheral blood T cells to keratinocytes through the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 pathway. J. Invest. Dermatol. 100, 424–428 (1993).

    CAS  PubMed  Google Scholar 

  18. Kaser, A. & Blumberg, R.S. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin. Immunol. 21, 156–163 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bertolotti, A. et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J. Clin. Invest. 107, 585–593 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaser, A., Zeissig, S. & Blumberg, R.S. Inflammatory bowel disease. Annu. Rev. Immunol. 28, 573–621 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Heazlewood, C.K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, e54 (2008).

    PubMed  PubMed Central  Google Scholar 

  23. Kühn, R., Löhler, J., Rennick, D., Rajewsky, K. & Müller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    PubMed  Google Scholar 

  24. Glocker, E.O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shkoda, A. et al. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 132, 190–207 (2007).

    CAS  PubMed  Google Scholar 

  26. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    CAS  PubMed  Google Scholar 

  27. Luedde, T. et al. Deletion of NEMO/IKKγ in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119–132 (2007).

    CAS  PubMed  Google Scholar 

  28. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    CAS  PubMed  Google Scholar 

  29. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    CAS  PubMed  Google Scholar 

  30. Ziegler, S.F. & Artis, D. Sensing the outside world: TSLP regulates barrier immunity. Nat. Immunol. 11, 289–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang, H. et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat. Immunol. 11, 608–617 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kouzaki, H., O'Grady, S.M., Lawrence, C.B. & Kita, H. Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2. J. Immunol. 183, 1427–1434 (2009).

    CAS  PubMed  Google Scholar 

  33. Abreu, M.T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10, 131–144 (2010).

    CAS  PubMed  Google Scholar 

  34. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gong, J. et al. Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation. Clin. Immunol. published online, doi:10.1016/j.clim.2010.04.001 (10 May 2010).

  36. Fritz, J., Le Bourhis, L., Magalhaes, J. & Philpott, D. Innate immune recognition at the epithelial barrier drives adaptive immunity: APCs take the back seat. Trends Immunol. 29, 41–49 (2008).

    CAS  PubMed  Google Scholar 

  37. Fritz, J.H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007).

    CAS  PubMed  Google Scholar 

  38. Kobayashi, K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    CAS  PubMed  Google Scholar 

  39. Magalhaes, J.G. et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol. 181, 7925–7935 (2008).

    CAS  PubMed  Google Scholar 

  40. Travassos, L.H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    CAS  PubMed  Google Scholar 

  41. Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206, 1465–1472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

    CAS  PubMed  Google Scholar 

  43. Owyang, A.M. et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 203, 843–849 (2006).

    PubMed  PubMed Central  Google Scholar 

  44. Angkasekwinai, P. et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Saenz, S.A., Taylor, B.C. & Artis, D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172–190 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Al-Shami, A., Spolski, R., Kelly, J., Keane-Myers, A. & Leonard, W.J. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med. 202, 829–839 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    CAS  PubMed  Google Scholar 

  48. Yoo, J. et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202, 541–549 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shires, J., Theodoridis, E. & Hayday, A.C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    CAS  PubMed  Google Scholar 

  50. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Pastorelli, L. et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc. Natl. Acad. Sci. USA 107, 8017–8022 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Perrigoue, J.G., Marshall, F.A. & Artis, D. On the hunt for helminths: innate immune cells in the recognition and response to helminth parasites. Cell. Microbiol. 10, 1757–1764 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zaph, C. et al. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med. 205, 2191–2198 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lajoie-Kadoch, S. et al. TNF-α and IFN-γ inversely modulate expression of the IL-17E receptor in airway smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L1238–L1246 (2006).

    CAS  PubMed  Google Scholar 

  55. Hanabuchi, S. et al. Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J. Immunol. 184, 2999–3007 (2010).

    CAS  PubMed  Google Scholar 

  56. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    CAS  PubMed  Google Scholar 

  57. Li, M. et al. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc. Natl. Acad. Sci. USA 103, 11736–11741 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Iliev, I.D. et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 58, 1481–1489 (2009).

    CAS  PubMed  Google Scholar 

  59. Maynard, C.L. et al. Contrasting roles for all-trans retinoic acid in TGF-beta-mediated induction of Foxp3 and Il10 genes in developing regulatory T cells. J. Exp. Med. 206, 343–357 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kato, A. & Schleimer, R.P. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr. Opin. Immunol. 19, 711–720 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Niess, J.H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    CAS  PubMed  Google Scholar 

  62. Strid, J., Tigelaar, R.E. & Hayday, A.C. Skin immune surveillance by T cells–a new order? Semin. Immunol. 21, 110–120 (2009).

    CAS  PubMed  Google Scholar 

  63. Dinarello, C.A. The biological properties of interleukin-1. Eur. Cytokine Netw. 5, 517–531 (1994).

    CAS  PubMed  Google Scholar 

  64. Jerde, T.J. & Bushman, W. IL-1 induces IGF-dependent epithelial proliferation in prostate development and reactive hyperplasia. Science Signal. 2, ra49 (2009).

    Google Scholar 

  65. Groves, R.W., Mizutani, H., Kieffer, J.D. & Kupper, T.S. Inflammatory skin disease in transgenic mice that express high levels of interleukin 1 alpha in basal epidermis. Proc. Natl. Acad. Sci. USA 92, 11874–11878 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Renne, J., Schafer, V., Werfel, T. & Wittmann, M. Interleukin-1 from epithelial cells fosters T cell-dependent skin inflammation. Br. J. Dermatol. 162, 1198–1205 (2010).

    CAS  PubMed  Google Scholar 

  67. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  68. Watanabe, H. et al. Activation of the IL-1β-processing inflammasome is involved in contact hypersensitivity. J. Invest. Dermatol. 127, 1956–1963 (2007).

    CAS  PubMed  Google Scholar 

  69. Dupaul-Chicoine, J. et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 32, 367–378 (2010).

    CAS  PubMed  Google Scholar 

  70. Zaki, M. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Takagi, H. et al. Contrasting action of IL-12 and Il-18 in the development of dextran sulphate colitis in mice. Scand. J. Immunol. 38, 837–844 (2003).

    CAS  Google Scholar 

  72. Blumberg, H. et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J. Exp. Med. 204, 2603–2614 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, H.C. & Ziegler, S.F. Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFκB. Proc. Natl. Acad. Sci. USA 104, 914–919 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Netea, M.G. et al. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1β and IL-6 production through a caspase 1-dependent mechanism. Proc. Natl. Acad. Sci. USA 102, 16309–16314 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shioya, M. et al. Epithelial overexpression of interleukin-32α in inflammatory bowel disease. Clin. Exp. Immunol. 149, 480–486 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Calabrese, F. et al. IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 178, 894–901 (2008).

    CAS  PubMed  Google Scholar 

  77. He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 26, 812–826 (2007).

    CAS  PubMed  Google Scholar 

  78. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273 (2010).

    CAS  PubMed  Google Scholar 

  79. Xu, W. et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat. Immunol. 8, 294–303 (2007).

    CAS  PubMed  Google Scholar 

  80. Schleimer, R.P., Kato, A., Kern, R., Kuperman, D. & Avila, P.C. Epithelium: at the interface of innate and adaptive immune responses. J. Allergy Clin. Immunol. 120, 1279–1284 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schluns, K.S. et al. Distinct cell types control lymphoid subset development by means of IL-15 and IL-15 receptor alpha expression. Proc. Natl. Acad. Sci. USA 101, 5616–5621 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu, Q. et al. MyD88-dependent signaling for IL-15 production plays an important role in maintenance of CD8 alpha alpha TCR alpha beta and TCR gamma delta intestinal intraepithelial lymphocytes. J. Immunol. 176, 6180–6185 (2006).

    CAS  PubMed  Google Scholar 

  83. Muehlhoefer, A. et al. Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. J. Immunol. 164, 3368–3376 (2000).

    CAS  PubMed  Google Scholar 

  84. Sharp, L.L., Jameson, J.M., Cauvi, G. & Havran, W.L. Dendritic epidermal T cells regulate skin homeostasis through local production of insulin-like growth factor 1. Nat. Immunol. 6, 73–79 (2005).

    CAS  PubMed  Google Scholar 

  85. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  86. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nava, P. et al. Interferon-γ regulates intestinal epithelial homeostasis through converging β-catenin signaling pathways. Immunity. 32, 392–402 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, Y. et al. Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune response against mucosal bacterial infection. Immunity. 32, 403–413 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. Sharpe, A.H. Mechanisms of costimulation. Immunol. Rev. 229, 5–11 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim, J. et al. Constitutive and inducible expression of b7 family of ligands by human airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 33, 280–289 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Arnett, H.A. et al. BTNL2, a butyrophilin/B7-like molecule, is a negative costimulatory molecule modulated in intestinal inflammation. J. Immunol. 178, 1523–1533 (2007).

    CAS  PubMed  Google Scholar 

  93. Nguyen, T., Liu, X.K., Zhang, Y. & Dong, C. BTNL2, a butyrophilin-like molecule that functions to inhibit T cell activation. J. Immunol. 176, 7354–7360 (2006).

    CAS  PubMed  Google Scholar 

  94. Arnett, H.A., Escobar, S.S. & Viney, J.L. Regulation of costimulation in the era of butyrophilins. Cytokine 46, 370–375 (2009).

    CAS  PubMed  Google Scholar 

  95. Lian, Y., Yue, J., Han, M., Liu, J. & Liu, L. Analysis of the association between BTNL2 polymorphism and tuberculosis in Chinese Han population. Infect. Genet. Evol. 10, 517–521 (2010).

    CAS  PubMed  Google Scholar 

  96. Mochida, A. et al. Butyrophilin-like 2 gene is associated with ulcerative colitis in the Japanese under strong linkage disequilibrium with HLA-DRB1*1502. Tissue Antigens 70, 128–135 (2007).

    CAS  PubMed  Google Scholar 

  97. Spagnolo, P. et al. Analysis of BTNL2 genetic polymorphisms in British and Dutch patients with sarcoidosis. Tissue Antigens 70, 219–227 (2007).

    CAS  PubMed  Google Scholar 

  98. Yang, Y. et al. Characterization of B7S3 as a novel negative regulator of T cells. J. Immunol. 178, 3661–3667 (2007).

    CAS  PubMed  Google Scholar 

  99. Witherden, D.A. et al. Novel functional roles for JAML and CAR in epithelial γδ T cell activation. Science (in the press).

  100. Verdino, P., Witherden, D.A., Havran, W.L. & Wilson, I.A. Molecular interaction of CAR and JAML induces recruitment of the central cell signal transducer PI3K. Science (in the press).

  101. Eagle, R.A. & Trowsdale, J. Promiscuity and the single receptor: NKG2D. Nat. Rev. Immunol. 7, 737–744 (2007).

    CAS  PubMed  Google Scholar 

  102. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    CAS  PubMed  Google Scholar 

  103. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA 96, 6879–6884 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Strid, J. et al. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat. Immunol. 9, 146–154 (2008).

    CAS  PubMed  Google Scholar 

  105. Whang, M.I., Guerra, N. & Raulet, D.H. Costimulation of dendritic epidermal γδ T cells by a new NKG2D ligand expressed specifically in the skin. J. Immunol. 182, 4557–4564 (2009).

    CAS  PubMed  Google Scholar 

  106. Hershberg, R.M. & Mayer, L.F. Antigen processing and presentation by intestinal epithelial cells—polarity and complexity. Immunol. Today 21, 123–128 (2000).

    CAS  PubMed  Google Scholar 

  107. Hayday, A.C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    CAS  PubMed  Google Scholar 

  108. Meresse, B. et al. Coordinated induction by IL-15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    CAS  PubMed  Google Scholar 

  109. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–177 (2004).

    PubMed  Google Scholar 

  110. Fahrer, A.M. et al. Attributes of gamma delta intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl. Acad. Sci. USA 98, 10261–10266 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Jameson, J. et al. A role for skin γδ T cells in wound repair. Science 296, 747–749 (2002).

    CAS  PubMed  Google Scholar 

  112. Bryceson, Y.T., Ljunggren, H.G. & Long, E.O. Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood 114, 2657–2666 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cepek, K.L. et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature 372, 190–193 (1994).

    CAS  PubMed  Google Scholar 

  114. Daniels, M.A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    CAS  PubMed  Google Scholar 

  115. Lewis, J.M. et al. Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nat. Immunol. 7, 843–850 (2006).

    CAS  PubMed  Google Scholar 

  116. Boyden, L.M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 40, 656–662 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank many colleagues for insight. Supported by the Wellcome Trust and an UK Medical Research Council program grant for psoriasis research (A.H.); the European Molecular Biology Organization and the Marie Curie Program (M.S.), and the US National Institutes of Health (C.J., W.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wendy Havran or Adrian Hayday.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swamy, M., Jamora, C., Havran, W. et al. Epithelial decision makers: in search of the 'epimmunome'. Nat Immunol 11, 656–665 (2010). https://doi.org/10.1038/ni.1905

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing