Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The composition and signaling of the IL-35 receptor are unconventional

Abstract

Interleukin 35 (IL-35) belongs to the IL-12 family of heterodimeric cytokines but has a distinct functional profile. IL-35 suppresses T cell proliferation and converts naive T cells into IL-35-producing induced regulatory T cells (iTr35 cells). Here we found that IL-35 signaled through a unique heterodimer of receptor chains IL-12Rβ2 and gp130 or homodimers of each chain. Conventional T cells were sensitive to IL-35-mediated suppression in the absence of one receptor chain but not both receptor chains, whereas signaling through both chains was required for IL-35 expression and conversion into iTr35 cells. Signaling through the IL-35 receptor required the transcription factors STAT1 and STAT4, which formed a unique heterodimer that bound to distinct sites in the promoters of the genes encoding the IL-12 subunits p35 and Ebi3. This unconventional mode of signaling, distinct from that of other members of the IL-12 family, may broaden the spectrum and specificity of IL-35-mediated suppression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-12Rβ2 or gp130 is sufficient for IL-35-mediated suppression.
Figure 2: Both IL-12Rβ2 and gp130 are required for the expression of Ebi3 and Il12a, and conversion into iTr35 cells.
Figure 3: IL-35R-deficient Tconv cells are resistant to IL-35-mediated suppression in vivo.
Figure 4: IL-12Rβ2 and gp130 associate in the presence of IL-35 to form three receptors.
Figure 5: Expression of the IL-35R chains can be induced IL-2 and IL-27.
Figure 6: IL-35 signals via STAT1 and STAT4.
Figure 7: IL-35 uses a STAT1-STAT4 heterodimer to mediate interaction with the Ebi3 and Il12a promoters.
Figure 8: Structural models of the IL-12 family of cytokine receptor complexes.

Similar content being viewed by others

References

  1. Vignali, D.A., Collison, L.W. & Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  Google Scholar 

  2. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nat. Rev. Immunol. 6, 295–307 (2006).

    Article  CAS  Google Scholar 

  3. O'Shea, J.J. & Paul, W.E. Regulation of TH1 differentiation–controlling the controllers. Nat. Immunol. 3, 506–508 (2002).

    Article  CAS  Google Scholar 

  4. Artis, D. et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J. Immunol. 173, 5626–5634 (2004).

    Article  CAS  Google Scholar 

  5. Awasthi, A. et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 8, 1380–1389 (2007).

    Article  CAS  Google Scholar 

  6. Fitzgerald, D.C. et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat. Immunol. 8, 1372–1379 (2007).

    Article  CAS  Google Scholar 

  7. Stumhofer, J.S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat. Immunol. 8, 1363–1371 (2007).

    Article  CAS  Google Scholar 

  8. Collison, L.W. et al. IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol. 11, 1093–1101 (2010).

    Article  CAS  Google Scholar 

  9. Collison, L.W., Pillai, M.R., Chaturvedi, V. & Vignali, D.A. Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. J. Immunol. 182, 6121–6128 (2009).

    Article  CAS  Google Scholar 

  10. Collison, L.W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    Article  CAS  Google Scholar 

  11. Chua, A.O., Wilkinson, V.L., Presky, D.H. & Gubler, U. Cloning and characterization of a mouse IL-12 receptor-β component. J. Immunol. 155, 4286–4294 (1995).

    CAS  PubMed  Google Scholar 

  12. Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168, 5699–5708 (2002).

    Article  CAS  Google Scholar 

  13. Pflanz, S. et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol. 172, 2225–2231 (2004).

    Article  CAS  Google Scholar 

  14. Silver, J.S. & Hunter, C.A. gp130 at the nexus of inflammation, autoimmunity, and cancer. J. Leukoc. Biol. 88, 1145–1156 (2010).

    Article  CAS  Google Scholar 

  15. Bacon, C.M. et al. Interleukin 12 induces tyrosine phosphorylation and activation of STAT4 in human lymphocytes. Proc. Natl. Acad. Sci. USA 92, 7307–7311 (1995).

    Article  CAS  Google Scholar 

  16. Delgoffe, G.M., Murray, P.J. & Vignali, D.A. Interpreting mixed signals: the cell's cytokine conundrum. Curr. Opin. Immunol. 23, 1–7 (2011).

    Article  Google Scholar 

  17. Thierfelder, W.E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174 (1996).

    Article  CAS  Google Scholar 

  18. Huber, M. et al. IL-27 inhibits the development of regulatory T cells via STAT3. Int. Immunol. 20, 223–234 (2008).

    Article  CAS  Google Scholar 

  19. Owaki, T. et al. STAT3 is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. J. Immunol. 180, 2903–2911 (2008).

    Article  CAS  Google Scholar 

  20. Wu, C. et al. IL-12 receptor β 2 (IL-12Rβ2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites. J. Immunol. 165, 6221–6228 (2000).

    Article  CAS  Google Scholar 

  21. Presky, D.H. et al. A functional interleukin 12 receptor complex is composed of two β-type cytokine receptor subunits. Proc. Natl. Acad. Sci. USA 93, 14002–14007 (1996).

    Article  CAS  Google Scholar 

  22. Villarino, A. et al. The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 19, 645–655 (2003).

    Article  CAS  Google Scholar 

  23. Schroers, A. et al. Dynamics of the gp130 cytokine complex: a model for assembly on the cellular membrane. Protein Sci. 14, 783–790 (2005).

    Article  CAS  Google Scholar 

  24. Skiniotis, G., Lupardus, P.J., Martick, M., Walz, T. & Garcia, K.C. Structural organization of a full-length gp130/LIF-R cytokine receptor transmembrane complex. Mol. Cell 31, 737–748 (2008).

    Article  CAS  Google Scholar 

  25. Betz, U.A. & Muller, W. Regulated expression of gp130 and IL-6 receptor α chain in T cell maturation and activation. Int. Immunol. 10, 1175–1184 (1998).

    Article  CAS  Google Scholar 

  26. Charlot-Rabiega, P., Bardel, E., Dietrich, C., Kastelein, R. & Devergne, O. Signaling events involved in interleukin 27 (IL-27)-induced proliferation of human naive CD4+ T cells and B cells. J. Biol. Chem. 286, 27350–27362 (2011).

    Article  CAS  Google Scholar 

  27. Hibbert, L., Pflanz, S., De Waal Malefyt, R. & Kastelein, R.A. IL-27 and IFN-α signal via Stat1 and Stat3 and induce T-bet and IL-12Rβ2 in naive T cells. J. Interferon Cytokine Res. 23, 513–522 (2003).

    Article  CAS  Google Scholar 

  28. Takeda, A. et al. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J. Immunol. 170, 4886–4890 (2003).

    Article  CAS  Google Scholar 

  29. Liao, W., Lin, J.X., Wang, L., Li, P. & Leonard, W.J. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559 (2011).

    Article  CAS  Google Scholar 

  30. O'Shea, J.J. & Murray, P.J. Cytokine signaling modules in inflammatory responses. Immunity 28, 477–487 (2008).

    Article  CAS  Google Scholar 

  31. Ho, H.H. & Ivashkiv, L.B. Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J. Biol. Chem. 281, 14111–14118 (2006).

    Article  CAS  Google Scholar 

  32. Yamamoto, K., Miura, O., Hirosawa, S. & Miyasaka, N. Binding sequence of STAT4: STAT4 complex recognizes the IFN-γ activation site (GAS)-like sequence (T/A)TTCC(C/G)GGAA(T/A). Biochem. Biophys. Res. Commun. 233, 126–132 (1997).

    Article  CAS  Google Scholar 

  33. Ehret, G.B. et al. DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J. Biol. Chem. 276, 6675–6688 (2001).

    Article  CAS  Google Scholar 

  34. Yu, Q., Thieu, V.T. & Kaplan, M.H. Stat4 limits DNA methyltransferase recruitment and DNA methylation of the IL-18Rα gene during Th1 differentiation. EMBO J. 26, 2052–2060 (2007).

    Article  CAS  Google Scholar 

  35. Ramsauer, K. et al. Distinct modes of action applied by transcription factors STAT1 and IRF1 to initiate transcription of the IFN-γ-inducible gbp2 gene. Proc. Natl. Acad. Sci. USA 104, 2849–2854 (2007).

    Article  CAS  Google Scholar 

  36. Boulanger, M.J., Chow, D.C., Brevnova, E.E. & Garcia, K.C. Hexameric structure and assembly of the interleukin-6/IL-6 α-receptor/gp130 complex. Science 300, 2101–2104 (2003).

    Article  CAS  Google Scholar 

  37. Stern, A.S., Gubler, U., Presky, D.H. & Magram, J. Structural and functional aspects of the IL-12 receptor complex. Chem. Immunol. 68, 23–37 (1997).

    Article  CAS  Google Scholar 

  38. Huyton, T. et al. An unusual cytokine:Ig-domain interaction revealed in the crystal structure of leukemia inhibitory factor (LIF) in complex with the LIF receptor. Proc. Natl. Acad. Sci. USA 104, 12737–12742 (2007).

    Article  CAS  Google Scholar 

  39. Lucas, S., Ghilardi, N., Li, J. & de Sauvage, F.J. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA 100, 15047–15052 (2003).

    Article  CAS  Google Scholar 

  40. Canda-Sánchez, A. et al. Differential distribution of both IL-12Rβ chains in the plasma membrane of human T cells. J. Membr. Biol. 227, 1–12 (2009).

    Article  Google Scholar 

  41. Maldonado, R.A., Irvine, D.J., Schreiber, R. & Glimcher, L.H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527–532 (2004).

    Article  CAS  Google Scholar 

  42. Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12Rβ2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    Article  CAS  Google Scholar 

  43. Grohmann, U. et al. IL-12 acts directly on DC to promote nuclear localization of NF-κB and primes DC for IL-12 production. Immunity 9, 315–323 (1998).

    Article  CAS  Google Scholar 

  44. Andersson, J. et al. CD4+FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β-dependent manner. J. Exp. Med. 205, 1975–1981 (2008).

    Article  CAS  Google Scholar 

  45. Pot, C. et al. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183, 797–801 (2009).

    Article  CAS  Google Scholar 

  46. Pistoia, V., Cocco, C. & Airoldi, I. Interleukin-12 receptor β2: from cytokine receptor to gatekeeper gene in human B-cell malignancies. J. Clin. Oncol. 27, 4809–4816 (2009).

    Article  CAS  Google Scholar 

  47. Hirschfield, G.M. et al. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N. Engl. J. Med. 360, 2544–2555 (2009).

    Article  CAS  Google Scholar 

  48. Matsui, E. et al. Mutations of the IL-12 receptor β2 chain gene in atopic subjects. Biochem. Biophys. Res. Commun. 266, 551–555 (1999).

    Article  CAS  Google Scholar 

  49. Remmers, E.F. et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R–IL12RB2 regions associated with Behçet's disease. Nat. Genet. 42, 698–702 (2010).

    Article  CAS  Google Scholar 

  50. Xu, Y. et al. Crystal structure of the entire ectodomain of gp130: insights into the molecular assembly of the tall cytokine receptor complexes. J. Biol. Chem. 285, 21214–21218 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Fairweather and J.A. Frisancho (Johns Hopkins University) for spleens and lymph nodes from Il12rb1−/− mice; M. Karin and S. Grivennikov (University of California at San Diego) for Il6stΔT mice; C. Hunter and J. Stumhofer (University of Pennsylvania) for Il27ra−/− mice; A. Satoskar and P. Reville (Ohio State University) for Stat1−/− mice; C. Drake and H.R. Yen (Johns Hopkins University) for Stat3ΔT mice; R. McEver (University of Oklahoma Health Sciences Center) for mice used to establish the colony of CD4cre × Il6stfl/fl mice at St. Jude Children's Research Hospital; M.J. Turk (Dartmouth College) for B16-F10 melanoma; J.A. Frisancho, S. Grivennikov, M. Karin, J. Stumhofer, P. Reville and H.R. Yen for assistance with the collection and shipping of spleens and lymph nodes; J. Partridge and P. Brindle for assistance in designing ChIP experiments; K. Forbes, A. Castellaw and A. Krause for the maintenance, breeding and genotyping of mouse colonies; R. Cross, G. Lennon and S. Morgan for flow cytometry; the staff of the Shared Animal Resource Center at St. Jude Children's Research Hospital for the animal husbandry; and the Hartwell Center for Biotechnology and Bioinformatics at St. Jude Children's Research Hospital for the synthesis of real-time PCR primers and probes. Supported by the US National Institutes of Health (R01 AI091977 to D.A.A.V. and F32 AI072816 to L.W.C.), NovoNordisk (D.A.A.V.), the National Cancer Institute Comprehensive Cancer Center (CA21765 to D.A.A.V.) and the American Lebanese Syrian Associated Charities (D.A.A.V.).

Author information

Authors and Affiliations

Authors

Contributions

L.W.C. designed (with help from D.A.A.V.) and executed a substantial proportion of the experiments, analyzed data and wrote the manuscript; G.M.D. did STAT coimmunoprecipitation and ChIP–ChIP-reChIP experiments, cytokine-receptor coimmunoprecipitation experiments, some phosphorylated STAT analysis and functional assays and wrote the manuscript; C.S.G. did confocal microscopy–FRET experiments; K.M.V. generated all constructs; V.C. did TH1 and TH2 polarization for receptor analysis; D.F., A.R.S., C.A.H. and C.G.D. provided mice; K.C.G. did structural modeling of cytokine receptor complexes; P.J.M. analyzed phosphorylated STAT by immunoblot; C.A.H., P.M., K.C.G., C.G.D. and K.M.V. commented on the manuscript; and D.A.A.V. conceived of the research, directed the study and wrote the manuscript.

Corresponding author

Correspondence to Dario A A Vignali.

Ethics declarations

Competing interests

D.A.A.V., L.W.C. and K.M.V. have submitted (pending) patents and are entitled to a share of the income generated from licensing of those patent rights for commercial development; D.A.A.V. received support from a sponsored research agreement with NovoNordisk.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Table 1 (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collison, L., Delgoffe, G., Guy, C. et al. The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol 13, 290–299 (2012). https://doi.org/10.1038/ni.2227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing